
GWCelery Documentation
Release 0.9.0

Leo Singer

Nov 23, 2019

Contents:

1 Quick start 3
1.1 To install . 3
1.2 To test . 3
1.3 To start . 4

2 Design and anatomy of GWCelery 7
2.1 Conceptual overview . 7
2.2 Block diagram . 8
2.3 Processes . 10
2.4 Eternal tasks . 11
2.5 Handlers . 11

3 Configuration 13
3.1 Authentication . 13

4 Running under HTCondor 15
4.1 Shortcuts . 15
4.2 Managing multiple deployments . 16
4.3 Job accounting . 16

5 Monitoring and Management 17
5.1 Flower . 17
5.2 Sentry . 17
5.3 Flask . 18
5.4 Nagios . 18
5.5 Command-Line Tools . 19

6 API Reference 21
6.1 gwcelery.conf module . 21
6.2 gwcelery.email module . 25
6.3 gwcelery.lvalert module . 26
6.4 gwcelery.sentry module . 27
6.5 gwcelery.tasks module . 27
6.6 gwcelery.tools module . 57
6.7 gwcelery.util module . 59
6.8 gwcelery.voevent module . 60

i

7 Contributing 63
7.1 Development model . 63
7.2 Where new code should go . 63
7.3 Guidelines for tasks . 63
7.4 Unit tests . 64
7.5 Code style . 64
7.6 Documentation . 64

8 Deployment 67
8.1 Continuous deployment . 67
8.2 Making a new release . 67

9 Changelog 71
9.1 0.9.0 (2019-11-23) . 71
9.2 0.8.7 (2019-09-14) . 73
9.3 0.8.5.1 (2019-09-04) . 73
9.4 0.8.6 (2019-09-01) . 73
9.5 0.8.5 (2019-08-23) . 73
9.6 0.8.4 (2019-08-16) . 74
9.7 0.8.3 (2019-08-09) . 74
9.8 0.8.2 (2019-08-02) . 74
9.9 0.8.1 (2019-07-29) . 75
9.10 0.8.0 (2019-07-26) . 75
9.11 0.7.1 (2019-07-12) . 75
9.12 0.7.0 (2019-06-21) . 76
9.13 0.6.3 (2019-06-14) . 76
9.14 0.6.2 (2019-06-07) . 76
9.15 0.6.1 (2019-05-24) . 77
9.16 0.6.0 (2019-05-20) . 77
9.17 0.5.7 (2019-05-13) . 77
9.18 0.5.6 (2018-05-08) . 78
9.19 0.5.5 (2019-05-03) . 78
9.20 0.5.4 (2019-05-01) . 79
9.21 0.5.3 (2019-04-17) . 79
9.22 0.5.2 (2019-04-15) . 79
9.23 0.5.1 (2019-04-12) . 79
9.24 0.5.0 (2019-04-12) . 79
9.25 0.4.3 (2019-04-05) . 80
9.26 0.4.2 (2019-04-05) . 80
9.27 0.4.1 (2019-04-02) . 80
9.28 0.4.0 (2019-03-29) . 81
9.29 0.3.1 (2019-03-18) . 81
9.30 0.3.0 (2019-03-01) . 82
9.31 0.2.6 (2019-02-12) . 82
9.32 0.2.5 (2019-02-01) . 82
9.33 0.2.4 (2018-12-17) . 83
9.34 0.2.3 (2018-12-16) . 83
9.35 0.2.2 (2018-12-14) . 83
9.36 0.2.1 (2018-12-14) . 83
9.37 0.2.0 (2018-12-14) . 83
9.38 0.1.7 (2018-11-27) . 84
9.39 0.1.6 (2018-11-14) . 84
9.40 0.1.5 (2018-11-13) . 84
9.41 0.1.4 (2018-10-29) . 84

ii

9.42 0.1.3 (2018-10-26) . 85
9.43 0.1.2 (2018-10-11) . 85
9.44 0.1.1 (2018-10-04) . 85
9.45 0.1.0 (2018-09-26) . 86
9.46 0.0.31 (2018-09-04) . 86
9.47 0.0.30 (2018-08-02) . 86
9.48 0.0.29 (2018-07-31) . 87
9.49 0.0.28 (2018-07-25) . 87
9.50 0.0.27 (2018-07-22) . 87
9.51 0.0.26 (2018-07-20) . 87
9.52 0.0.25 (2018-07-19) . 88
9.53 0.0.24 (2018-07-18) . 88
9.54 0.0.23 (2018-07-18) . 88
9.55 0.0.22 (2018-07-11) . 88
9.56 0.0.21 (2018-07-10) . 89
9.57 0.0.20 (2018-07-09) . 89
9.58 0.0.19 (2018-07-09) . 89
9.59 0.0.18 (2018-07-06) . 89
9.60 0.0.17 (2018-07-05) . 89
9.61 0.0.16 (2018-07-05) . 89
9.62 0.0.15 (2018-06-29) . 90
9.63 0.0.14 (2018-06-28) . 90
9.64 0.0.13 (2018-06-28) . 90
9.65 0.0.12 (2018-06-28) . 90
9.66 0.0.11 (2018-06-27) . 90
9.67 0.0.10 (2018-06-13) . 91
9.68 0.0.9 (2018-06-06) . 92
9.69 0.0.8 (2018-06-06) . 92
9.70 0.0.7 (2018-05-31) . 92
9.71 0.0.6 (2018-05-26) . 92
9.72 0.0.5 (2018-05-08) . 93
9.73 0.0.4 (2018-04-28) . 93
9.74 0.0.3 (2018-04-27) . 93
9.75 0.0.2 (2018-04-27) . 93
9.76 0.0.1 (2018-04-27) . 93

10 License 95

11 Indices and tables 103

Bibliography 105

Python Module Index 107

Index 109

iii

iv

GWCelery Documentation, Release 0.9.0

GWCelery is a simple and reliable package for annotating and orchestrating LIGO/Virgo alerts, built from widely
used open source components. It is built on the Celery distributed task queue (hence the name). This is the design and
reference manual for GWCelery.

GWCelery’s responsibilities include:

1. Merging related candidates from multiple online LIGO/Virgo transient searches into “superevents”

2. Correlating LIGO/Virgo events with gamma-ray bursts, neutrinos, and supernovae

3. Launching automated follow-up analyses including data quality checks, rapid sky localization, automated pa-
rameter estimation, and source classification

4. Generating and sending preliminary machine-readable GCN notices

5. Sending updated GCN notices after awaiting human input

6. Automatically composing GCN Circulars

Note: If you are a scientist, student, educator, or astronomy enthusiast looking for information about LIGO/Virgo
alerts and low-latency data products, then please see our LIGO/Virgo Public Alerts User Guide.

Contents: 1

https://celery.readthedocs.io/en/latest/index.html
https://emfollow.docs.ligo.org/userguide/index.html

GWCelery Documentation, Release 0.9.0

2 Contents:

CHAPTER 1

Quick start

These instructions are suitable for installing GWCelery for development and testing on any machine.

1.1 To install

GWCelery requires Python >= 3.7.

The easiest way to install it is with venv and pip:

$ python -m venv --system-site-packages ~/gwcelery
$ source ~/gwcelery/bin/activate
$ pip install gwcelery

Hint: Note: GWCelery requires a fairly new version of setuptools. If you get an error message that looks like this:

pkg_resources.VersionConflict: (setuptools 0.9.8
(/usr/lib/python2.7/site-packages),
Requirement.parse('setuptools>=30.3.0'))

then run pip install --upgrade setuptools and try again.

1.2 To test

With setup.py:

$ python setup.py test

3

GWCelery Documentation, Release 0.9.0

1.3 To start

Before starting GWCelery, you need to authenticate for access to GraceDB and LVAlert and make sure that you have
a Redis server running. Once you have completed those steps, you can start each of the GWCelery manually.

1.3.1 Authentication

To authenticate for GraceDB, obtain grid credentials from the LSC DataGrid Client by running ligo-proxy-init:

$ ligo-proxy-init albert.einstein

To authenticate for LVAlert, first complete the LVAlert Account Activation form once for each LVAlert server that you
intend to use (generally you only need “Playground” for development purposes). Make a note of the passwords and
store them in your ~/.netrc file with appropriate file permissions:

$ echo > ~/.netrc
$ chmod 0600 ~/.netrc
$ echo machine lvalert.cgca.uwm.edu login albert.einstein password password-for-
→˓production >> ~/.netrc
$ echo machine lvalert-playground.cgca.uwm.edu login albert.einstein password
→˓password-for-playground >> ~/.netrc
$ echo machine lvalert-test.cgca.uwm.edu login albert.einstein password password-for-
→˓test >> ~/.netrc

1.3.2 Redis

GWCelery requires a Redis database server for task bookkeeping. Your operating system’s package manager may be
able to install, configure, and automatically launch a suitable Redis server for you.

Debian, Ubuntu, apt

Debian or Ubuntu users can install and start Redis using apt-get:

$ sudo apt-get install redis

macOS, MacPorts

Mac users with MacPorts can install Redis using port install:

$ sudo port install redis

Use port load to start the server:

$ sudo port load redis

From source

If none of the above options are available, then you can follow the Redis Quick Start instructions to build redis from
source and start a server:

4 Chapter 1. Quick start

https://www.lsc-group.phys.uwm.edu/lscdatagrid/doc/installclient.html
https://www.lsc-group.phys.uwm.edu/cgi-bin/jabber-acct.cgi
https://redis.io
https://redis.io/topics/quickstart

GWCelery Documentation, Release 0.9.0

$ wget http://download.redis.io/redis-stable.tar.gz
$ tar xvzf redis-stable.tar.gz
$ cd redis-stable
$ make -j
$ src/redis-server

1.3.3 Start GWCelery components manually

GWCelery itself consists of five Celery workers and one Flask web application. Start them all by running each of the
following commands:

$ gwcelery worker -l info -n gwcelery-worker -Q celery -B --lvalert
$ gwcelery worker -l info -n gwcelery-exttrig-worker -Q exttrig -c 1
$ gwcelery worker -l info -n gwcelery-openmp-worker -Q openmp -c 1
$ gwcelery worker -l info -n gwcelery-superevent-worker -Q superevent -c 1
$ gwcelery worker -l info -n gwcelery-voevent-worker -Q voevent -P solo
$ gwcelery flask run

Hint: With these arguments, each of the commands above will run until you type Control-C. You may want to run
each of them in a separate terminal, or in the background using screen or nohup.

1.3. To start 5

https://celery.readthedocs.io/en/latest/userguide/workers.html#guide-workers
http://flask.pocoo.org
https://linux.die.net/man/1/screen
https://linux.die.net/man/1/nohup

GWCelery Documentation, Release 0.9.0

6 Chapter 1. Quick start

CHAPTER 2

Design and anatomy of GWCelery

2.1 Conceptual overview

Several online gravitational-wave transient search pipelines (currently Gstlal, PyCBC, cWB, and oLIB) upload candi-
dates in real time to GraceDB, the central database and web portal for low-latency LIGO/Virgo analyses. Whenever
an event is uploaded or altered, GraceDB pushes machine-readable notifications through LVAlert, a pubsub system
based on XMPP.

The business logic for selecting and sending alerts to astronomers resides not in GraceDB itself but in GWCelery.
The role of GWCelery in the LIGO/Virgo alert infrastructure is to drive the workflow of aggregating and annotating
gravitational-wave candidates and sending GCN Notices to astronomers.

GWCelery interacts with GraceDB by listening for LVAlert messages and making REST API requests through the
GraceDB client. GWCelery interacts with GCN by listening for and sending GCN Notices using the Comet VOEvent
broker.

The major subsystems of GWCelery are:

• the LVAlert listener

• the GraceDB client

• the GCN listener

• the GCN broker

• the Superevent Manager, which clusters and merges related candidates into “superevents”

• the External Trigger Manager, which correlates gravitational-wave events with GRB, neutrino, and supernova
events

• the Orchestrator, which executes the per-event annotation workflow

7

https://xmpp.org

GWCelery Documentation, Release 0.9.0

2.2 Block diagram

Below is a diagram illustrating the conceptual relationships of these subsystems. Nodes in the graph are hyperlinks to
the relevant API documentation.

8 Chapter 2. Design and anatomy of GWCelery

GWCelery Documentation, Release 0.9.0

GWCelery

Orchestrator

GraceDB

LVAlert

GraceDB
Client

LVAlert
Listener

Gstlal
Search

PyCBC
Search

cWB
Search

oLIB
Search

Superevent
Manager

External
Trigger

Manager

Detchar BAYESTAR Parameter Estimation

Sky Map
Visualization

Source
Classification

Circular
Templates

GCN
Listener

GCN
Broker

GCN

Astronomers

2.2. Block diagram 9

GWCelery Documentation, Release 0.9.0

2.3 Processes

A complete deployment of GWCelery (whether launched from the shell or from HTCondor) consists of several pro-
cesses:

1. Message Broker

Routes and distributes Celery task messages and stores results of tasks for later retrieval. See Choosing a Broker
in the Celery manual for more details. For technical reasons, we use a Redis broker.

2. Celery Beat

Scheduler for periodic tasks (the Celery equivalent of cron jobs). For more information, see Periodic Tasks in
the Celery manual.

3. Monitoring Console (optional)

You can optionally run Flower, a web monitoring console for Celery.

4. OpenMP Worker

A Celery worker that has been configured to accept only computationally intensive tasks that use OpenMP
parallelism. To route a task to the OpenMP worker, pass the keyword argument queue='openmp' to the
@app.task decorator when you declare it.

There are two tasks that run in the OpenMP queue:

• gwcelery.tasks.bayestar.localize()

• gwcelery.tasks.skymaps.plot_volume()

5. Superevent Worker

A Celery worker that is dedicated to serially process triggers from low latency pipelines and create/modify
superevents in GraceDB. There is only one task that runs on the Superevent queue:

• gwcelery.tasks.superevents.handle()

6. External Trigger Worker

A Celery worker that is dedicated to serially process external triggers from GRB alerts received from Fermi,
Swift and neutrino alerts received from SNEWS and create/modify external trigger events in GraceDB:

• gwcelery.tasks.external_triggers.handle_gcn()

7. VOEvent Worker

A Celery worker that is dedicated to sending and receiving VOEvents. It runs an embedded instance of the
Comet VOEvent broker, which is started and stopped using a set of custom Celery bootsteps. Note that the
VOEvent worker must be started with the --pool=solo option so that tasks are executed in the same Python
process that is running the VOEvent broker.

8. General-Purpose Worker

A Celery worker that accepts all other tasks.

9. Flask Web Application

A web application that provides forms to manually initiate certain tasks, including sending an update alert or
creating a mock event.

10 Chapter 2. Design and anatomy of GWCelery

https://celery.readthedocs.io/en/latest/getting-started/first-steps-with-celery.html#celerytut-broker
https://celery.readthedocs.io/en/latest/getting-started/brokers/redis.html#broker-redis
https://celery.readthedocs.io/en/latest/userguide/periodic-tasks.html#guide-beat
https://celery.readthedocs.io/en/latest/userguide/monitoring.html#monitoring-flower
https://comet.readthedocs.io/en/stable/index.html
https://celery.readthedocs.io/en/latest/userguide/extending.html

GWCelery Documentation, Release 0.9.0

2.4 Eternal tasks

GWCelery has a few long-running tasks that do not return because they have to keep open a persistent connection with
some external service. These tasks are subclasses of celery_eternal.EternalTask or celery_eternal.
EternalProcessTask.

• gwcelery.tasks.lvalert.listen()

These tasks run inside the general-purpose worker process described above, and are automatically started (and restarted
as necessary) by Celery Beat.

2.5 Handlers

A recurring pattern in GWCelery is that an eternal task listens continuously to a remote connection, receives packets
of data over that connection, and dispatches further handling to other tasks based on packet type.

A decorator is provided to register a function as a Celery task and also plug it in as a handler for one or more packet
types. This pattern is used for both GCN notices and LVAlert message handlers.

2.5.1 GCN notices

GCN notice handler tasks are declared using the gwcelery.tasks.gcn.handler() decorator:

import lxml.etree
from gwcelery.tasks import gcn

@gcn.handler(gcn.NoticeType.FERMI_GBM_GND_POS,
gcn.NoticeType.FERMI_GBM_FIN_POS)

def handle_fermi(payload):
root = lxml.etree.fromstring(payload)
do work here...

2.5.2 LVAlert messages

LVAlert message handler tasks are declared using the gwcelery.tasks.lvalert.handler() decorator:

from gwcelery.tasks import lvalert

@lvalert.handler('cbc_gstlal',
'cbc_spiir',
'cbc_pycbc',
'cbc_mbtaonline')

def handle_cbc(alert):
do work here...

2.4. Eternal tasks 11

GWCelery Documentation, Release 0.9.0

12 Chapter 2. Design and anatomy of GWCelery

CHAPTER 3

Configuration

Like any Celery application, GWCelery’s configuration options are stored at run time in a global configuration object,
gwcelery.app.conf. There are options for Celery itself such as options that affect the task and result backends;
these options are documented in the Configuration and defaults section of the Celery manual.

The configuration object also holds all of the options that are specific to GWCelery and affect the behavior of individual
GWCelery tasks; examples include the GraceDB and LVAlert service URLs, GCN hostnames, and frame file types
and channel names. For a list of all GWCelery-specific options, see the API documentation for the gwcelery.conf
module.

GWCelery provides four preset configurations, one for each GraceDB server instance (production, deployment, test-
ing, or playground). The default configuration preset is for the playground server, gracedb-playground.ligo.
org. The recommended way to select a different preset is to set the CELERY_CONFIG_MODULE environment
variable before starting the workers. For example, to configure GWCelery for production:

$ export CELERY_CONFIG_MODULE=gwcelery.conf.production

3.1 Authentication

There are a few files that must be present in order to provide authentication tokens for GraceDB and LValert.

GraceDB

You must provide valid LSC DataGrid credentials in order for requests to the GraceDB REST API to work. During
development and testing, you can use your personal credentials obtained from the LSC DataGrid Client by running
ligo-proxy-init. However, credentials obtained this way expire after a few days or whenever your machine’s
temporary directory is wiped (e.g., at system restart).

For production deployment, you should obtain a robot certificate and store it in a location such as ~/.globus/
userkey.pem and ~/.globus/usercert.pem.

13

https://celery.readthedocs.io/en/latest/userguide/configuration.html#configuration
https://celery.readthedocs.io/en/latest/reference/celery.html#celery.Celery.config_from_envvar
https://www.lsc-group.phys.uwm.edu/lscdatagrid/doc/installclient.html
https://robots.ligo.org

GWCelery Documentation, Release 0.9.0

LVAlert

You must provide a valid username and password for LVAlert. You can request an account using the LVAlert Account
Activation form. The LVAlert username and password should be stored in your netrc file.

14 Chapter 3. Configuration

https://www.lsc-group.phys.uwm.edu/cgi-bin/jabber-acct.cgi
https://www.lsc-group.phys.uwm.edu/cgi-bin/jabber-acct.cgi
https://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html

CHAPTER 4

Running under HTCondor

The recommended way to start and stop GWCelery on the LIGO Data Grid cluster is using HTCondor. See the
example HTCondor submit file gwcelery.sub. This submit file will start up Redis, the worker processes, the Flask
web application, and Flower. It will create some log files and a Unix domain socket, so you should first navigate to a
directory where you want these files to go. For example:

$ mkdir -p ~/gwcelery/var && cd ~/gwcelery/var

Then run the submit file as follows:

$ gwcelery.sub
Submitting job(s)........
8 job(s) submitted to cluster 293497.

To stop GWCelery, run the condor_hold command:

$ condor_hold -constraint 'JobBatchName == "gwcelery"'
All jobs matching constraint (JobBatchName == "gwcelery") have been held

To restart GWCelery, run condor_release:

$ condor_release -constraint 'JobBatchName == "gwcelery"'
All jobs matching constraint (JobBatchName == "gwcelery") have been released

Note that there is normally no need to re-submit GWCelery if the machine is rebooted, because the jobs will persist
in the HTCondor queue.

4.1 Shortcuts

The following commands are provided as shortcuts for the above operations:

15

https://research.cs.wisc.edu/htcondor/
https://git.ligo.org/emfollow/gwcelery/blob/master/gwcelery/data/gwcelery.sub

GWCelery Documentation, Release 0.9.0

$ gwcelery condor submit
$ gwcelery condor rm
$ gwcelery condor q
$ gwcelery condor hold
$ gwcelery condor release

The following command is a shortcut for gwcelery condor rm; gwcelery condor submit:

$ gwcelery condor resubmit

4.2 Managing multiple deployments

There should generally be at most one full deployment of GWCelery per GraceDB server running at one time. The
gwcelery condor shortcut command is designed to protect you from accidentally starting multiple deployments
of GWCelery by inspecting the HTCondor job queue before submitting new jobs. If you try to start GWCelery a
second time on the same host in the same directory, you will get the following error message:

$ gwcelery condor submit
error: GWCelery jobs are already running in this directory.
You must first remove exist jobs with "gwcelery condor rm".
To see the status of those jobs, run "gwcelery condor q".

However, there are situations where you may actually want to run multiple instances of GWCelery on the same
machine. For example, you may want to run one instance for the ‘production’ GraceDB server and one for the
‘playground’ server. To accomplish this, just start the two instances of gwcelery in different directories. Here is an
example:

$ mkdir -p production
$ pushd production
$ CELERY_CONFIG_MODULE=gwcelery.conf.production gwcelery condor submit
$ popd
$ mkdir -p playground
$ pushd playground
$ CELERY_CONFIG_MODULE=gwcelery.conf.playground gwcelery condor submit
$ popd

4.3 Job accounting

When GWCelery is started using gwcelery condor submit or gwcelery condor resubmit, the HT-
Condor accounting group is set based on which GWCelery configuration you are using:

• ligo.prod.o3.cbc.pe.bayestar for production

• ligo.dev.o3.cbc.pe.bayestar for all other configurations, including playground

16 Chapter 4. Running under HTCondor

https://htcondor.readthedocs.io/en/stable/admin-manual/user-priorities-negotiation.html#group-accounting
https://htcondor.readthedocs.io/en/stable/admin-manual/user-priorities-negotiation.html#group-accounting

CHAPTER 5

Monitoring and Management

GWCelery supports a rich selection of management and monitoring tools. Here is an introduction to a few of them.
For more Celery monitoring solutions, see the Celery monitoring and management guide.

5.1 Flower

Flower is a dashboard for monitoring Celery tasks. To start Flower for monitoring during local development, run the
following command and then navigate to http://localhost:5555/ in your browser:

$ gwcelery flower

5.2 Sentry

All warnings, errors, exceptions, and tasks failures are both logged to disk and uploaded instantly to Sentry, an error
monitoring and reporting platform. The Sentry instance is installed on premise at Caltech. Sentry notifies GWCelery
contributors by email when a new bug occurs.

For details about the Sentry logging configuration, see the gwcelery.sentry module or the Celery integration
module in the Sentry SDK docs.

17

https://celery.readthedocs.io/en/latest/userguide/monitoring.html
https://flower.readthedocs.io/
http://localhost:5555/
https://sentry.io/
https://docs.sentry.io/server/
https://docs.sentry.io/platforms/python/celery/
https://docs.sentry.io/platforms/python/celery/

GWCelery Documentation, Release 0.9.0

5.3 Flask

GWCelery includes a Flask web application that provides forms to manually initiate certain tasks.

To start Flask for monitoring during local development, run the following command and then navigate to http:
//localhost:5000/ in your browser:

$ gwcelery flask run

5.4 Nagios

Note: The GWCelery Nagios plugin is tailored to GWCelery and is not sufficiently general to use with other Celery
applications.

The dashboard.ligo.org and monitor.ligo.org services use Nagios to monitor and report on the health of all of the
components of the low-latency analysis infrastructure.

GWCelery provides the command gwcelery nagios to check the status of the application and provide a report in
the format that Nagios expects.

18 Chapter 5. Monitoring and Management

http://localhost:5000/
http://localhost:5000/
https://dashboard.ligo.org/
https://monitor.ligo.org/
https://www.nagios.com
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/pluginapi.html

GWCelery Documentation, Release 0.9.0

You can run it manually from the command line:

$ gwcelery nagios
OK: GWCelery is running normally

To configure Nagios itself, see the Nagios configuration overview, or if GWCelery and Nagios are running on different
hosts, the Nagios Remote Plugin Executor (NRPE) documentation.

5.5 Command-Line Tools

All Celery application provide command-line monitoring and management utilities, including the following:

• gwcelery shell: Start an interactive Python or IPython interpreter for interacting with Celery. All tasks as
well as the app application instance are automatically imported and available as globals. Example:

$ gwcelery shell
Python 3.6.6 (default, Jun 28 2018, 05:43:53)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: download.s('coinc.xml', 'M6757').delay().get()

• gwcelery call: Call a task from the command line by passing it arguments in JSON format. The output is
the unique identifier of the result. Example:

$ gwcelery call gwcelery.tasks.gracedb.download --args='["coinc.xml", "M6757"]'
d11099e7-75e5-4aa3-800b-b122b667757c

• gwcelery result: Get the result of a previously called task. Example:

$ gwcelery result ab4aa6d7-9f21-420c-8401-cbe6863cf7dc
(b'<?xml version=\'1.0\' encoding=\'utf-8\'?>\n<!DOCTYPE LIGO_LW SYSTEM "htt'
b'p://ldas-sw.ligo.caltech.edu/doc/ligolwAPI/html/ligolw_dtd.txt">\n<LIGO_L'
...
b'\t</Stream>\n\t</Table>\n</LIGO_LW>\n')

• gwcelery events: A text UI monitoring tool that offers functionality similar to Flower. Example:

$ gwcelery events

5.5. Command-Line Tools 19

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/config.html
https://assets.nagios.com/downloads/nagioscore/docs/nrpe/NRPE.pdf
https://celery.readthedocs.io/en/latest/userguide/monitoring.html#monitoring-control

GWCelery Documentation, Release 0.9.0

20 Chapter 5. Monitoring and Management

CHAPTER 6

API Reference

Celery application initialization.

gwcelery.app = <Celery gwcelery>
Celery application object.

6.1 gwcelery.conf module

GWCelery application configuration.

This module defines configuration variables and default values, including both generic options for Celery as well as
options that control the behavior of specific GWCelery tasks.

To override the configuration, define the CELERY_CONFIG_MODULE environment variable to the fully qualified
name of any Python module that can be located in sys.path, including any of the following presets:

• gwcelery.conf.development

• gwcelery.conf.playground (the default)

• gwcelery.conf.production

• gwcelery.conf.test

gwcelery.conf.condor_accounting_group = 'ligo.dev.o3.cbc.pe.bayestar'
HTCondor accounting group for Celery workers launched with condor_submit.

gwcelery.conf.expose_to_public = False
Set to True if events meeting the public alert threshold really should be exposed to the public.

gwcelery.conf.lvalert_host = 'lvalert-playground.cgca.uwm.edu'
LVAlert host.

gwcelery.conf.gracedb_host = 'gracedb-playground.ligo.org'
GraceDB host.

21

https://celery.readthedocs.io/en/latest/userguide/configuration.html
https://docs.python.org/3/library/sys.html#sys.path

GWCelery Documentation, Release 0.9.0

gwcelery.conf.voevent_broadcaster_address = ':5342'
The VOEvent broker will bind to this address to send GCNs. This should be a string of the form host:port. If
host is empty, then listen on all available interfaces.

gwcelery.conf.voevent_broadcaster_whitelist = []
List of hosts from which the broker will accept connections. If empty, then completely disable the broker’s
broadcast capability.

gwcelery.conf.voevent_receiver_address = '68.169.57.253:8099'
The VOEvent listener will connect to this address to receive GCNs. For options, see GCN’s list of available
VOEvent servers. If this is an empty string, then completely disable the GCN listener.

gwcelery.conf.email_host = 'imap.gmail.com'
IMAP hostname to receive the GCN e-mail notice formats.

gwcelery.conf.superevent_d_t_start = {'gstlal': 1.0, 'mbtaonline': 1.0, 'pycbc': 1.0, 'spiir': 1.0}
Pipeline based lower extent of superevent segments. For cwb and lib this is decided from extra attributes.

gwcelery.conf.superevent_d_t_end = {'gstlal': 1.0, 'mbtaonline': 1.0, 'pycbc': 1.0, 'spiir': 1.0}
Pipeline based upper extent of superevent segments For cwb and lib this is decided from extra attributes.

gwcelery.conf.superevent_query_d_t_start = 100.0
Lower extent of superevents query

gwcelery.conf.superevent_query_d_t_end = 100.0
Upper extent of superevents query

gwcelery.conf.superevent_default_d_t_start = 1.0
Default lower extent of superevent segments

gwcelery.conf.superevent_default_d_t_end = 1.0
Default upper extent for superevent segments

gwcelery.conf.superevent_far_threshold = 0.0002777777777777778
Maximum false alarm rate to consider events superevents.

gwcelery.conf.preliminary_alert_timeout = 30.0
Wait this many seconds for the preferred event to stabilize before issuing a preliminary alert.

gwcelery.conf.preliminary_alert_far_threshold = {'burst': 3.1709791983764586e-08, 'cbc': 1.9290123456790122e-07, 'test': 3.8580246913580245e-07}
Group specific maximum false alarm rate to consider sending preliminary alerts.

gwcelery.conf.preliminary_alert_trials_factor = {'burst': 3.0, 'cbc': 4.0}
Trials factor corresponding to trigger categories. For CBC and Burst, trials factor is the number of pipelines.
CBC pipelines are gstlal, pycbc, mbtaonline and spiir. Burst searches are cwb.allsky, cwb.bbh and cwb.imbh.

gwcelery.conf.snews_gw_far_threshold = 1.1574074074074073e-05
Maximum false alarm rate for a superevent to send out a coincidence alert between an external SNEWS alert
and the superevent.

gwcelery.conf.superevent_clean_up_timeout = 270.0
The orchestrator will wait this many seconds from the time of the application of the GCN_PRELIM_SENT
label to revise the preferred event out of the accumulated events.

gwcelery.conf.subthreshold_annotation_timeout = 300.0
The orchestrator will wait this many seconds from the time of the creation of a new superevent to the time that
subthreshold superevents are annotated. It is expected that the timeout is long enough such that there are no
more G events being added to the superevent.

gwcelery.conf.pe_timeout = 345.0
The orchestrator will wait this many seconds from the time of the creation of a new superevent to the time that
parameter estimation begins, in case the preferred event is updated with high latency.

22 Chapter 6. API Reference

https://gcn.gsfc.nasa.gov/voevent.html#tc2
https://gcn.gsfc.nasa.gov/voevent.html#tc2

GWCelery Documentation, Release 0.9.0

gwcelery.conf.check_vector_prepost = {'CWB': [1.5, 1.5], 'Fermi': [2, 2], 'HardwareInjection': [2, 2], 'LIB': [1.5, 1.5], 'MBTAOnline': [2, 2], 'SNEWS': [10, 10], 'Swift': [2, 2], 'gstlal': [2, 2], 'oLIB': [1.5, 1.5], 'pycbc': [2, 2], 'spiir': [2, 2]}
Seconds before and after the superevent start and end times which the DQ vector check will include in its check.
Pipeline dependent.

gwcelery.conf.uses_gatedhoft = {'CWB': True, 'Fermi': False, 'HardwareInjection': False, 'LIB': False, 'MBTAOnline': True, 'SNEWS': False, 'Swift': False, 'gstlal': True, 'oLIB': False, 'pycbc': True, 'spiir': True}
Whether or not a pipeline uses gated h(t). Determines whether or not the DMT-DQ_VECTOR will be analyzed
for data quality.

gwcelery.conf.llhoft_glob = '/dev/shm/kafka/{detector}_O2/*.gwf'
File glob for playground low-latency h(t) frames. Currently points to O2 replay data.

gwcelery.conf.llhoft_channels = {'H1:DMT-DQ_VECTOR': 'dmt_dq_vector_bits', 'H1:GDS-CALIB_STATE_VECTOR': 'ligo_state_vector_bits', 'L1:DMT-DQ_VECTOR': 'dmt_dq_vector_bits', 'L1:GDS-CALIB_STATE_VECTOR': 'ligo_state_vector_bits', 'V1:DQ_ANALYSIS_STATE_VECTOR': 'virgo_state_vector_bits'}
Low-latency h(t) state vector configuration. This is a dictionary consisting of a channel and its bitmask, as
defined in gwcelery.tasks.detchar.

gwcelery.conf.idq_channels = ['H1:IDQ-PGLITCH_OVL_32_2048', 'L1:IDQ-PGLITCH_OVL_32_2048']
Low-latency iDQ p(glitch) channel names from O2 replay.

gwcelery.conf.idq_pglitch_thresh = 0.95
If P(Glitch) is above this threshold, and idq_veto for the pipeline is true, DQV will be labeled for the event.

gwcelery.conf.idq_veto = {'CWB': False, 'Fermi': False, 'HardwareInjection': False, 'LIB': False, 'MBTAOnline': False, 'SNEWS': False, 'Swift': False, 'gstlal': False, 'oLIB': False, 'pycbc': False, 'spiir': False}
If true for a pipeline, iDQ values above the threshold defined in thres will cause DQV to be labeled. Currently
all False, pending iDQ review (should be done before O3).

gwcelery.conf.low_latency_frame_types = {'H1': 'H1_O2_llhoft', 'L1': 'L1_O2_llhoft', 'V1': 'V1_O2_llhoft'}
Types of low latency frames used in Parameter Estimation (see gwcelery.tasks.inference) and in
cache creation for detchar checks (see gwcelery.tasks.detchar).

gwcelery.conf.high_latency_frame_types = {'H1': None, 'L1': None, 'V1': None}
Types of high latency frames used in Parameter Estimation and in cache creation for detchar checks. They do
not exist for O2Replay data. (see gwcelery.tasks.inference and gwcelery.tasks.detchar)

gwcelery.conf.strain_channel_names = {'H1': 'H1:GDS-CALIB_STRAIN_O2Replay', 'L1': 'L1:GDS-CALIB_STRAIN_O2Replay', 'V1': 'V1:Hrec_hoft_16384Hz_O2Replay'}
Names of h(t) channels used in Parameter Estimation (see gwcelery.tasks.inference) and in detchar
omegascan creation (see gwcelery.tasks.detchar).

gwcelery.conf.state_vector_channel_names = {'H1': 'H1:GDS-CALIB_STATE_VECTOR', 'L1': 'L1:GDS-CALIB_STATE_VECTOR', 'V1': 'V1:DQ_ANALYSIS_STATE_VECTOR'}
Names of state vector channels used in Parameter Estimation (see gwcelery.tasks.inference)

gwcelery.conf.detchar_bit_definitions = {'dmt_dq_vector_bits': {'bits': {1: 'NO_OMC_DCPD_ADC_OVERFLOW', 2: 'NO_DMT-ETMY_ESD_DAC_OVERFLOW'}, 'channel': 'DMT-DQ_VECTOR', 'description': {'NO_DMT-ETMY_ESD_DAC_OVERFLOW': 'ETMY ESD DAC not overflowing', 'NO_OMC_DCPD_ADC_OVERFLOW': 'OMC DCPC ADC not overflowing'}}, 'ligo_state_vector_bits': {'bits': {0: 'HOFT_OK', 1: 'OBSERVATION_INTENT', 5: 'NO_STOCH_HW_INJ', 6: 'NO_CBC_HW_INJ', 7: 'NO_BURST_HW_INJ', 8: 'NO_DETCHAR_HW_INJ'}, 'channel': 'GDS-CALIB_STATE_VECTOR', 'description': {'HOFT_OK': 'h(t) was successfully computed', 'NO_BURST_HW_INJ': 'No burst HW injection', 'NO_CBC_HW_INJ': 'No CBC HW injection', 'NO_DETCHAR_HW_INJ': 'No HW injections for detector characterization', 'NO_STOCH_HW_INJ': 'No stochastic HW injection', 'OBSERVATION_INTENT': '"observation intent" button is pushed'}}, 'virgo_state_vector_bits': {'bits': {0: 'HOFT_OK', 1: 'OBSERVATION_INTENT', 5: 'NO_STOCH_HW_INJ', 6: 'NO_CBC_HW_INJ', 7: 'NO_BURST_HW_INJ', 8: 'NO_DETCHAR_HW_INJ', 10: 'GOOD_DATA_QUALITY_CAT1'}, 'channel': 'DQ_ANALYSIS_STATE_VECTOR', 'description': {'GOOD_DATA_QUALITY_CAT1': 'Good data quality (CAT1 type)', 'HOFT_OK': 'h(t) was successfully computed', 'NO_BURST_HW_INJ': 'No burst HW injection', 'NO_CBC_HW_INJ': 'No CBC HW injection', 'NO_DETCHAR_HW_INJ': 'No HW injections for detector characterization', 'NO_STOCH_HW_INJ': 'No stochastic HW injection', 'OBSERVATION_INTENT': '"observation intent" button is pushed'}}}
Bit definitions for detchar checks

gwcelery.conf.omegascan_durations = [0.5, 2.0, 10.0]
Durations for omegascans, symmetric about t0

gwcelery.conf.pe_threshold = 4.133597883597884e-07
FAR threshold in Hz for Parameter Estimation. PE group now applies 1/(4 weeks) as a threshold. 86400 seconds
= 1 day and 28 days = 4 weeks.

gwcelery.conf.pe_results_path = '/home/docs/public_html/online_pe'
Path to the results of Parameter Estimation (see gwcelery.tasks.inference)

gwcelery.conf.pe_results_url = 'https://ldas-jobs.ligo.caltech.edu/~docs/online_pe/'
URL of page where all the results of Parameter Estimation are outputted (see gwcelery.tasks.
inference)

gwcelery.conf.raven_coincidence_windows = {'GRB_Burst': [-600, 60], 'GRB_CBC': [-5, 1], 'SNEWS': [-10, 10]}
Time coincidence windows passed to ligo-raven. External events and superevents of the appropriate type are
considered to be coincident if within time window of each other.

6.1. gwcelery.conf module 23

GWCelery Documentation, Release 0.9.0

gwcelery.conf.mock_events_simulate_multiple_uploads = False
If True, then upload each mock event several times in rapid succession with random jitter in order to simulate
multiple pipeline uploads.

6.1.1 gwcelery.conf.development module

Application configuration for gracedb-dev1.ligo.org.

Inherits all settings from gwcelery.conf.test, with the exceptions below.

gwcelery.conf.development.gracedb_host = 'gracedb-dev1.ligo.org'
GraceDB host.

gwcelery.conf.development.sentry_environment = 'development'
Record this environment tag <https://docs.sentry.io/enriching-error-data/environments/>)‘ in Sentry log mes-
sages.

6.1.2 gwcelery.conf.playground module

Application configuration for gracedb-playground.ligo.org.

gwcelery.conf.playground.sentry_environment = 'playground'
Record this environment tag <https://docs.sentry.io/enriching-error-data/environments/>)‘ in Sentry log mes-
sages.

gwcelery.conf.playground.mock_events_simulate_multiple_uploads = True
If True, then upload each mock event several times in rapid succession with random jitter in order to simulate
multiple pipeline uploads.

6.1.3 gwcelery.conf.production module

Application configuration for gracedb.ligo.org.

Inherits all settings from gwcelery.conf.playground, with the exceptions below.

gwcelery.conf.production.condor_accounting_group = 'ligo.prod.o3.cbc.pe.bayestar'
HTCondor accounting group for Celery workers launched with condor_submit.

gwcelery.conf.production.expose_to_public = True
Set to True if events meeting the public alert threshold really should be exposed to the public.

gwcelery.conf.production.lvalert_host = 'lvalert.cgca.uwm.edu'
LVAlert host.

gwcelery.conf.production.gracedb_host = 'gracedb.ligo.org'
GraceDB host.

gwcelery.conf.production.voevent_broadcaster_address = ':5341'
The VOEvent broker will bind to this address to send GCNs. This should be a string of the form host:port. If
host is empty, then listen on all available interfaces.

gwcelery.conf.production.voevent_broadcaster_whitelist = ['capella2.gsfc.nasa.gov']
List of hosts from which the broker will accept connections. If empty, then completely disable the broker’s
broadcast capability.

gwcelery.conf.production.llhoft_glob = '/dev/shm/kafka/{detector}/*.gwf'
File glob for low-latency h(t) frames.

24 Chapter 6. API Reference

GWCelery Documentation, Release 0.9.0

gwcelery.conf.production.low_latency_frame_types = {'H1': 'H1_llhoft', 'L1': 'L1_llhoft', 'V1': 'V1_llhoft'}
Types of frames used in Parameter Estimation (see gwcelery.tasks.inference) and in cache creation
for detchar checks (see gwcelery.tasks.detchar).

gwcelery.conf.production.high_latency_frame_types = {'H1': 'H1_HOFT_C00', 'L1': 'L1_HOFT_C00', 'V1': 'V1Online'}
Types of high latency frames used in Parameter Estimation (see gwcelery.tasks.inference) and in
cache creation for detchar checks (see gwcelery.tasks.detchar).

gwcelery.conf.production.idq_channels = ['H1:IDQ-PGLITCH_OVL_16_4096', 'L1:IDQ-PGLITCH_OVL_16_4096']
Low-latency iDQ p(glitch) channel names from live O3 frames

gwcelery.conf.production.strain_channel_names = {'H1': 'H1:GDS-CALIB_STRAIN_CLEAN', 'L1': 'L1:GDS-CALIB_STRAIN_CLEAN', 'V1': 'V1:Hrec_hoft_16384Hz'}
Names of h(t) channels used in Parameter Estimation (see gwcelery.tasks.inference)

gwcelery.conf.production.sentry_environment = 'production'
Record this environment tag <https://docs.sentry.io/enriching-error-data/environments/>)‘ in Sentry log mes-
sages.

6.1.4 gwcelery.conf.test module

Application configuration for gracedb-test.ligo.org.

Inherits all settings from gwcelery.conf.playground, with the exceptions below.

gwcelery.conf.test.lvalert_host = 'lvalert-test.cgca.uwm.edu'
LVAlert host.

gwcelery.conf.test.gracedb_host = 'gracedb-test.ligo.org'
GraceDB host.

gwcelery.conf.test.sentry_environment = 'test'
Record this environment tag <https://docs.sentry.io/enriching-error-data/environments/>)‘ in Sentry log mes-
sages.

6.2 gwcelery.email module

Embed an IMAP email client into a Celery worker by extending Celery with bootsteps.

gwcelery.email.add_worker_arguments(parser)

gwcelery.email.install(app)
Register the email client subsystem in the application boot steps.

6.2.1 gwcelery.email.bootsteps module

class gwcelery.email.bootsteps.Receiver(consumer, email=False, **kwargs)
Bases: gwcelery.email.bootsteps.EmailBootStep

Run the global email receiver in background thread.

name = 'email client'

create(consumer)
Create the step.

start(consumer)

stop(consumer)

6.2. gwcelery.email module 25

https://celery.readthedocs.io/en/latest/userguide/extending.html

GWCelery Documentation, Release 0.9.0

6.2.2 gwcelery.email.signals module

Definitions of custom Celery signals related to emails.

These signals allow us to keep the VOEvent validation code decoupled from the email client itself.

gwcelery.email.signals.email_received = <Signal: email_received providing_args={'rfc822'}>
Fired whenever an email message is received.

Parameters rfc822 (bytes) – The RFC 822 contents of the message.

Examples

Register an email listener like this:

import email
import email.policy

@email_received.connect
def on_email_received(rfc822, **kwargs):

Parse the RFC822 email.
message = email.message_from_bytes(rfc822, policy=email.policy.default)
Print some of the message headers.
print('Subject:', message['Subject'])
print('From:', message['From'])
Print the plain-text message body.
body = message.get_body(['plain']).get_content()
print(body)

6.3 gwcelery.lvalert module

Embed a Comet LVAlert listener into a Celery worker by extending Celery with bootsteps.

gwcelery.lvalert.add_worker_arguments(parser)

gwcelery.lvalert.install(app)
Register the LVAlert subsystem in the application boot steps.

6.3.1 gwcelery.lvalert.bootsteps module

class gwcelery.lvalert.bootsteps.Receiver(consumer, lvalert=False, **kwargs)
Bases: gwcelery.lvalert.bootsteps.LVAlertBootStep

Run the global LVAlert receiver in background thread.

name = 'LVAlert client'

create(consumer)
Create the step.

start(consumer)

stop(consumer)

info(consumer)

26 Chapter 6. API Reference

https://celery.readthedocs.io/en/latest/userguide/signals.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://tools.ietf.org/html/rfc822.html
https://comet.readthedocs.io/en/stable/index.html
https://celery.readthedocs.io/en/latest/userguide/extending.html

GWCelery Documentation, Release 0.9.0

6.3.2 gwcelery.lvalert.signals module

Definitions of custom Celery signals related to VOEvents.

These signals allow us to keep the VOEvent broker code decoupled from any GCN-specific logic. Notably, it allows
us to keep all of the details of the GCN-specific “Notice Type” concept out of gwcelery.voevent.

gwcelery.lvalert.signals.lvalert_received = <Signal: lvalert_received providing_args={'node', 'payload'}>
Fired whenever a VOEvent is received.

Parameters xml_document (comet.utility.xml.xml_document) – The XML docu-
ment that was received. The raw file contents are available as xml_document.raw_bytes.
The lxml.etree representation of the document is available as xml_document.
element.

6.4 gwcelery.sentry module

Error telemetry for Sentry.

gwcelery.sentry.DSN = 'https://sentry.io/1425216'
Sentry data source name (DSN).

gwcelery.sentry.configure()
Configure Sentry logging integration for Celery.

See the official instructions for Celery integration.

Notes

Add the API key username/pasword pair to your netrc file.

6.5 gwcelery.tasks module

All Celery tasks are declared in submodules of this module.

6.5.1 gwcelery.tasks.bayestar module

Rapid sky localization with BAYESTAR.

(task)gwcelery.tasks.bayestar.localize(coinc_psd, graceid, filename=’bayestar.fits.gz’, dis-
abled_detectors=None)

Generate a rapid sky localization using BAYESTAR.

Parameters

• coinc_psd (tuple) – Tuple consisting of the byte contents of the input event’s coinc.
xml and psd.xml.gz files.

• graceid (str) – The GraceDB ID, used for FITS metadata and recording log messages
to GraceDB.

• filename (str, optional) – The name of the FITS file.

• disabled_detectors (list, optional) – List of detectors to disable.

Returns The byte contents of the finished FITS file.

6.4. gwcelery.sentry module 27

https://celery.readthedocs.io/en/latest/userguide/signals.html
https://sentry.io
https://docs.sentry.io/platforms/python/celery/
https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/bayestar.html#module-ligo.skymap.bayestar
https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/bayestar.html#module-ligo.skymap.bayestar
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

GWCelery Documentation, Release 0.9.0

Return type bytes

Notes

This task is adapted from the command-line tool bayestar-localize-lvalert.

It should execute in a special queue for computationally intensive, multithreaded, OpenMP tasks.

6.5.2 gwcelery.tasks.circulars module

Generate and upload automated circulars.

(task)gwcelery.tasks.circulars.create_initial_circular(graceid)
Create and return circular txt.

(task)gwcelery.tasks.circulars.create_emcoinc_circular(graceid)
Create and return the em_coinc circular txt.

(task)gwcelery.tasks.circulars.create_update_circular(graceid, up-
date_types=[’sky_localization’,
’em_bright’, ’p_astro’])

Create and return update circular txt.

(task)gwcelery.tasks.circulars.create_retraction_circular(graceid)
Create and return retraction circular txt.

6.5.3 gwcelery.tasks.condor module

Submit and monitor HTCondor jobs1.

Notes

Internally, we use the XML condor log format2 for easier parsing.

References

exception gwcelery.tasks.condor.JobAborted
Bases: Exception

Raised if an HTCondor job was aborted (e.g. by condor_rm).

exception gwcelery.tasks.condor.JobRunning
Bases: Exception

Raised if an HTCondor job is still running.

exception gwcelery.tasks.condor.JobFailed(returncode, cmd, output=None, stderr=None)
Bases: subprocess.CalledProcessError

Raised if an HTCondor job fails.

(task)gwcelery.tasks.condor.submit(submit_file, log=None)
Submit a job using HTCondor.

1 http://research.cs.wisc.edu/htcondor/manual/latest/condor_submit.html
2 http://research.cs.wisc.edu/htcondor/classad/refman/node3.html

28 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/tool/bayestar_localize_lvalert.html
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError
http://research.cs.wisc.edu/htcondor/manual/latest/condor_submit.html
http://research.cs.wisc.edu/htcondor/classad/refman/node3.html

GWCelery Documentation, Release 0.9.0

Parameters

• submit_file (str) – Path of the submit file.

• log (str) – Used internally to track job state. Caller should not set.

Raises

• JobAborted – If the job was aborted (e.g. by running condor_rm).

• JobFailed – If the job terminates and returns a nonzero exit code.

• JobRunning – If the job is still running. Causes the task to be re-queued until the job is
complete.

Example

>>> submit.s('example.sub',
... accounting_group='ligo.dev.o3.cbc.explore.test')

(task)gwcelery.tasks.condor.check_output(args, log=None, error=None, output=None,
**kwargs)

Call a process using HTCondor.

Call an external process using HTCondor, in a manner patterned after subprocess.check_output(). If
successful, returns its output on stdout. On failure, raise an exception.

Parameters

• args (list) – Command line arguments, as if passed to subprocess.
check_call().

• error, output (log,) – Used internally to track job state. Caller should not set.

• **kwargs – Extra submit description file commands. See the documentation for
condor_submit for possible values.

Returns Captured output from command.

Return type str

Raises

• JobAborted – If the job was aborted (e.g. by running condor_rm).

• JobFailed – If the job terminates and returns a nonzero exit code.

• JobRunning – If the job is still running. Causes the task to be re-queued until the job is
complete.

Example

>>> check_output.s(['sleep', '10'],
... accounting_group='ligo.dev.o3.cbc.explore.test')

6.5.4 gwcelery.tasks.detchar module

Flow Chart

The flow chart below shows the decision process for the application of DQOK and DQV labels.

6.5. gwcelery.tasks module 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/subprocess.html#subprocess.check_call
https://docs.python.org/3/library/subprocess.html#subprocess.check_call
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

detchar check_vectors

Superevent created/updated

Apply padding before/after start/end time

External trigger

Check DQ and INJ
states at all detectors

Check iDQ
at H1 and L1

Post results to
GraceDB log

DQ bits ok
at active detectors?

Injection(s) found
at active detectors?

iDQ P(glitch)
above threshold?

DQOK

 Yes

DQV

 No

INJ

 Yes Yes

Data quality and detector characterization tasks.

These tasks are mostly focused on checking interferometer state vectors. By design, the [LIGO] and [Virgo] state
vectors share the same definitions for the first 8 fields.

LIGO also has a [DMT] DQ vector that provides some additional instrumental checks.

References

gwcelery.tasks.detchar.create_cache(ifo, start, end)
Find .gwf files and create cache. Will first look in the llhoft, and if the frames have expired from llhoft, will call
gwdatafind.

Parameters

• ifo (str) – Interferometer name (e.g. H1).

• end (start,) – GPS start and end times desired.

Returns

Return type glue.lal.Cache

Example

>>> create_cache('H1', 1198800018, 1198800618)
[<glue.lal.CacheEntry at 0x7fbae6b71278>,
<glue.lal.CacheEntry at 0x7fbae6ae5b38>,
<glue.lal.CacheEntry at 0x7fbae6ae5c50>,

...

(continues on next page)

30 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

(continued from previous page)

<glue.lal.CacheEntry at 0x7fbae6b15080>,
<glue.lal.CacheEntry at 0x7fbae6b15828>]

(task)gwcelery.tasks.detchar.make_omegascan(ifo, t0, durs)
Helper function to create a single omegascan image, with multiple durations.

Parameters

• ifo (str) – ‘H1’, ‘L1’, or ‘V1’

• t0 (int or float) – Central time of the omegascan.

• durs (list of floats/ints) – List of three durations which will be scanned sym-
metrically about t0. Example: [0.5, 2, 10]

Returns bytes of png of the omegascan, or None if no omegascan created.

Return type bytes or None

(task)gwcelery.tasks.detchar.omegascan(t0, graceid)
Create omegascan for a certain event.

Parameters

• t0 (float) – Central event time.

• graceid (str) – GraceDB ID to which to upload the omegascan.

gwcelery.tasks.detchar.generate_table(title, high_bit_list, low_bit_list, unknown_bit_list)
Make a nice table which shows the status of the bits checked.

Parameters

• title (str) – Title of the table.

• high_bit_list (list) – List of bit names which are high.

• low_bit_list (list) – List of bit names which are low.

• unknown_bit_list (list) – List of bit names which are unknown.

Returns HTML string of the table.

Return type str

gwcelery.tasks.detchar.dqr_json(state, summary)
Generate DQR-compatible json-ready dictionary from process results, as described in
data-quality-report.design.

Parameters

• state ({'pass', 'fail'}) – State of the detchar checks.

• summary (str) – Summary of results from the process.

Returns Ready to be converted into json.

Return type dict

gwcelery.tasks.detchar.check_idq(cache, channel, start, end)
Looks for iDQ frame and reads them.

Parameters

• cache (glue.lal.Cache) – Cache from which to check.

• channel (str) – which idq channel (pglitch)

6.5. gwcelery.tasks module 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

• end (start,) – GPS start and end times desired.

Returns Tuple mapping iDQ channel to its maximum P(glitch).

Return type tuple

Example

>>> check_idq(cache, 'H1:IDQ-PGLITCH-OVL-100-1000',
1216496260, 1216496262)

('H1:IDQ-PGLITCH-OVL-100-1000', 0.87)

gwcelery.tasks.detchar.check_vector(cache, channel, start, end, bits, logic_type=’all’)
Check timeseries of decimals against a bitmask. This is inclusive of the start time and exclusive of the end time,
i.e. [start, . . . , end).

Parameters

• cache (glue.lal.Cache) – Cache from which to check.

• channel (str) – Channel to look at, e.g. H1:DMT-DQ_VECTOR.

• end (start,) – GPS start and end times desired.

• bits (gwpy.TimeSeries.Bits) – Definitions of the bits in the channel.

• logic_type (str, optional) – Type of logic to apply for vetoing. If all, then all
samples in the window must pass the bitmask. If any, then one or more samples in the
window must pass.

Returns Maps each bit in channel to its state.

Return type dict

Example

>>> check_vector(cache, 'H1:GDS-CALIB_STATE_VECTOR', 1216496260,
1216496262, ligo_state_vector_bits)

{'H1:HOFT_OK': True,
'H1:OBSERVATION_INTENT': True,
'H1:NO_STOCH_HW_INJ': True,
'H1:NO_CBC_HW_INJ': True,
'H1:NO_BURST_HW_INJ': True,
'H1:NO_DETCHAR_HW_INJ': True}

(task)gwcelery.tasks.detchar.check_vectors(event, graceid, start, end)
Perform data quality checks for an event and labels/logs results to GraceDB.

Depending on the pipeline, a certain amount of time (specified in check_vector_prepost) is appended to
either side of the superevent start and end time. This is to catch DQ issues slightly before and after the event,
such as that appearing in L1 just before GW170817.

A cache is then created for H1, L1, and V1, regardless of the detectors involved in the event. Then, the bits
and channels specified in the configuration file (llhoft_channels) are checked. If an injection is found in
the active detectors, ‘INJ’ is labeled to GraceDB. If an injection is found in any detector, a message with the
injection found is logged to GraceDB. If no injections are found across all detectors, this is logged to GraceDB.

A similar task is performed for the DQ states described in the DMT-DQ_VECTOR, LIGO GDS-
CALIB_STATE_VECTOR, and Virgo DQ_ANALYSIS_STATE_VECTOR. If no DQ issues are found in active

32 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

GWCelery Documentation, Release 0.9.0

detectors, ‘DQOK’ is labeled to GraceDB. Otherwise, ‘DQV’ is labeled. In all cases, the DQ states of all the
state vectors checked are logged to GraceDB.

This skips MDC events.

Parameters

• event (dict) – Details of event.

• graceid (str) – GraceID of event to which to log.

• end (start,) – GPS start and end times desired.

Returns event – Details of the event, reflecting any labels that were added.

Return type dict

6.5.5 gwcelery.tasks.em_bright module

This module computes the probabilities that there is a neutron star in the binary, and that the coalescence event resulted
in creation of tidally disrupted matter.

The result is returned in the form of a JSON file:

‘{“HasNS”: 1.0, “HasRemnant”: 1.0}’

• HasNS: The probability that at least one of the component masses in the binary is a neutron star. The defi-
nition of a neutron star in this context simply means an object with mass less than 3.0 solar mass.

• HasRemnant: The probability that the binary system can produce tidally disrupted matter during coales-
cence. This is computed using the fitting formula in arXiv:1807.00011 We are currently using an extremely
stiff equation of state (2H) to compute the compactness of the neutron star. This results in a higher chance
of labelling a systems with non-zero HasRemnant value.

Qualitative source classification for CBC events.

(task)gwcelery.tasks.em_bright.em_bright_posterior_samples(posterior_file_content)
Returns the probability of having a NS component and remnant using LALInference posterior samples.

Parameters posterior_file_content (hdf5 posterior file content) –

Returns JSON formatted string storing HasNS and HasRemnant probabilities

Return type str

Example

>>> em_bright_posterior_samples(GraceDb().files('S190930s',
... 'LALInference.posterior_samples.hdf5').read())
{"HasNS": 0.014904901243599122, "HasRemnant": 0.0}

(task)gwcelery.tasks.em_bright.classifier_other(args, graceid)
Returns the boolean probability of having a NS component and the probability of having non-zero disk mass.
This method is used for pipelines that do not provide the data products necessary for computation of the source
properties probabilities.

Parameters

• args (tuple) – Tuple containing (m1, m2, spin1z, spin2z, snr)

• graceid (str) – The graceid of the event

6.5. gwcelery.tasks module 33

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://arxiv.org/abs/1807.00011
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

Returns JSON formatted string storing HasNS and HasRemnant probabilities

Return type str

Example

>>> em_bright.classifier_other((2.0, 1.0, 0.0, 0.0, 10.), 'S123456')
'{"HasNS": 1.0, "HasRemnant": 1.0}'

(task)gwcelery.tasks.em_bright.classifier_gstlal(args, graceid)
Returns the probability of having a NS component and the probability of having non-zero disk mass in the
detected event. This method will be using the data products obtained from the weekly supervised learning
runs for injections campaigns. The data products are in pickle formatted RandomForestClassifier objects. The
method predict_proba of these objects provides us the probabilities of the coalesence being EM-Bright and
existence of neutron star in the binary.

Parameters

• args (tuple) – Tuple containing (m1, m2, spin1z, spin2z, snr)

• graceid (str) – The graceid of the event

Returns JSON formatted string storing HasNS and HasRemnant probabilities

Return type str

Notes

This task would only work from within the CIT cluster.

6.5.6 gwcelery.tasks.external_triggers module

This module listens to the GCNs from SNEWS and the Fermi and Swift missions. It is also responsible for carrying out
tasks related to external trigger-gravitational wave coincidences, including looking for temporal coincidences, creating
combined GRB-GW sky localization probability maps, and computing their joint temporal and spatio-temporal false
alarm rates.

There are two GCN and two LVAlert message handlers in the ~gwcelery.tasks.external_triggers module:

• handle_sn_gcn() is called for each SNEWS GCN.

• handle_grb_gcn() is called for each Fermi and Swift GCN.

• handle_sn_lvalert() is called for each SNEWS external trigger and superevent LVAlert.

• handle_grb_lvalert() is called for each Fermi and Swift external trigger and superevent LVAlert.

34 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

Flow Chart

handle_gcn handle_grb_lvalert handle_sn_lvalert

SNEWS GCN recieved

Does the event already
exist in gracedb

Fermi or Swift
GCN recieved

Update the existing
event in gracedb

yes

Create a new event
in gracedb

no

GRB external trigger or
Superevent LVAlert received

Is this a new type GRB
external trigger LVAlert?

Ignore

Is this a new type
superevent LVAlert?

no

Perform Raven
coincidence search(es)

yes

Is this a label type
superevent LVAlert?

no yes

no Is it an EM_COINC
label?

yes

no

Create combined LVC-Fermi
sky map

yes

Calculate FAR
 of GRB external

trigger-GW temporal
coincidence

Calculate FAR
 of GRB external

trigger-GW space-time
coincidence

SNEWS external trigger or
Superevent LVAlert received

Is this a new type SNEWS
external trigger LVAlert?

Ignore

Is this a new type
superevent LVAlert?

no

Perform Raven
coincidence search

yes

no yes

Tasks

(task)gwcelery.tasks.external_triggers.handle_snews_gcn(payload)
Handles the payload from SNEWS alerts.

Prepares the alert to be sent to graceDB as ‘E’ events.

(task)gwcelery.tasks.external_triggers.handle_grb_gcn(payload)
Handles the payload from Fermi and Swift alerts.

Prepares the alert to be sent to graceDB as ‘E’ events.

(task)gwcelery.tasks.external_triggers.handle_grb_lvalert(alert)
Parse an LVAlert message related to superevents/GRB external triggers and dispatch it to other tasks.

Notes

This LVAlert message handler is triggered by creating a new superevent or GRB external trigger event, or
applying the EM_COINC label to any superevent:

6.5. gwcelery.tasks module 35

GWCelery Documentation, Release 0.9.0

• Any new event triggers a coincidence search with gwcelery.tasks.raven.
coincidence_search().

• The EM_COINC label triggers the creation of a combined GW-GRB sky map using gwcelery.tasks.
ligo_fermi_skymaps.create_combined_skymap().

(task)gwcelery.tasks.external_triggers.handle_snews_lvalert(alert)
Parse an LVAlert message related to superevents/SN external triggers and dispatch it to other tasks.

Notes

This LVAlert message handler is triggered by creating a new superevent or SN external trigger event, or applying
the EM_COINC label to any superevent:

• Any new event triggers a coincidence search with gwcelery.tasks.raven.
coincidence_search().

6.5.7 gwcelery.tasks.first2years module

Create mock events from the “First Two Years” paper.

(task)gwcelery.tasks.first2years.pick_coinc
Pick a coincidence from the “First Two Years” paper.

(task)gwcelery.tasks.first2years._vet_event(superevents)

(task)gwcelery.tasks.first2years._upload_psd(graceid)

(task)gwcelery.tasks.first2years.upload_event
Upload a random event from the “First Two Years” paper.

After 2 minutes, randomly either retract or confirm the event to send a retraction or initial notice respectively.

6.5.8 gwcelery.tasks.ligo_fermi_skymaps module

Create and upload LVC-Fermi sky maps.

gwcelery.tasks.ligo_fermi_skymaps.create_combined_skymap(graceid)
Creates and uploads the combined LVC-Fermi skymap.

This also uploads the external trigger skymap to the external trigger GraceDB page.

(task)gwcelery.tasks.ligo_fermi_skymaps.get_preferred_skymap(graceid)
Get the LVC skymap fits filename.

If not available, will try again 10 seconds later, then 20, then 40, etc. until up to 10 minutes after initial attempt.

(task)gwcelery.tasks.ligo_fermi_skymaps.get_external_skymap_filename(graceid)
Get the external skymap fits filename.

If not available, will try again 10 seconds later, then 20, then 40, etc. until up to 10 minutes after initial attempt.

(task)gwcelery.tasks.ligo_fermi_skymaps.combine_skymaps(skymap1filebytes,
skymap2filebytes)

This task combines the two input skymaps, in this case the external trigger skymap and the LVC skymap and
writes to a temporary output file. It then returns the contents of the file as a byte array.

(task)gwcelery.tasks.ligo_fermi_skymaps.external_trigger(graceid)
Returns the associated external trigger GraceDB ID.

36 Chapter 6. API Reference

GWCelery Documentation, Release 0.9.0

(task)gwcelery.tasks.ligo_fermi_skymaps.external_trigger_heasarc(external_id)
Returns the HEASARC fits file link.

(task)gwcelery.tasks.ligo_fermi_skymaps.get_external_skymap(heasarc_link)
Download the Fermi sky map fits file and return the contents as a byte array.

If not available, will try again 10 seconds later, then 20, then 40, etc. until up to 10 minutes after initial attempt.

(task)gwcelery.tasks.ligo_fermi_skymaps.get_upload_external_skymap(graceid)
If a Fermi sky map is not uploaded yet, tries to download one and upload to external event. If sky map is not
available, passes so that this can be re-run the next time an update GCN notice is received.

6.5.9 gwcelery.tasks.gcn module

Tasks to send and receive Gamma-ray Coordinates Network [GCN] notices.

References

gwcelery.tasks.gcn.handler = {<sphinx.ext.autodoc.importer._MockObject object>: [<@task: gwcelery.tasks.gcn.validate of gwcelery>], <sphinx.ext.autodoc.importer._MockObject object>: [<@task: gwcelery.tasks.gcn.validate of gwcelery>], <sphinx.ext.autodoc.importer._MockObject object>: [<@task: gwcelery.tasks.gcn.validate of gwcelery>], <sphinx.ext.autodoc.importer._MockObject object>: [<@task: gwcelery.tasks.gcn.validate of gwcelery>], <sphinx.ext.autodoc.importer._MockObject object>: [<@task: gwcelery.tasks.external_triggers.handle_snews_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_grb_gcn of gwcelery>]}
Function decorator to register a handler callback for specified GCN notice types. The decorated function is
turned into a Celery task, which will be automatically called whenever a matching GCN notice is received.

Parameters

• *keys – List of GCN notice types to accept

• **kwargs – Additional keyword arguments for celery.Celery.task().

Examples

Declare a new handler like this:

@gcn.handler(gcn.NoticeType.FERMI_GBM_GND_POS,
gcn.NoticeType.FERMI_GBM_FIN_POS)

def handle_fermi(payload):
root = lxml.etree.fromstring(payload)
do work here...

exception gwcelery.tasks.gcn.SendingError
Bases: RuntimeError

A generic error associated with sending VOEvents.

(task)gwcelery.tasks.gcn.send(message)
Send a VOEvent to GCN.

This task will be retried several times if the VOEvent cannot be sent. See the Raises section below for circum-
stances that cause a retry.

Parameters message (bytes) – The raw VOEvent file contents.

Raises SendingError – If the VOEvent could not be sent because there were no network peers
connected to the VOEvent broadcaster.

(task)gwcelery.tasks.gcn.validate(payload)
Validate LIGO/Virgo GCN notices.

Check that the contents of a public LIGO/Virgo GCN matches the original VOEvent in GraceDB.

6.5. gwcelery.tasks module 37

https://celery.readthedocs.io/en/latest/reference/celery.html#celery.Celery.task
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#bytes

GWCelery Documentation, Release 0.9.0

Notes

If the VOEvent broadcaster is disabled by setting voevent_broadcaster_whitelist to an empty list,
then this task becomes a no-op.

6.5.10 gwcelery.tasks.gracedb module

Communication with GraceDB.

class gwcelery.tasks.gracedb.RetryableHTTPError(*args, **kwargs)
Bases: sphinx.ext.autodoc.importer._MockObject

Exception class for server-side HTTP errors that we should retry.

gwcelery.tasks.gracedb.catch_retryable_http_errors(f)
Decorator to capture server-side errors that we should retry.

We retry HTTP status 502 (Bad Gateway), 503 (Service Unavailable), and 504 (Gateway Timeout).

gwcelery.tasks.gracedb.task(*args, **kwargs)

(task)gwcelery.tasks.gracedb.create_event(*args, **kwargs)
Create an event in GraceDB.

(task)gwcelery.tasks.gracedb.create_label(*args, **kwargs)
Create a label in GraceDB.

(task)gwcelery.tasks.gracedb.remove_label(*args, **kwargs)
Create a label in GraceDB.

(task)gwcelery.tasks.gracedb.create_signoff(*args, **kwargs)
Create a label in GraceDB.

(task)gwcelery.tasks.gracedb.create_tag(*args, **kwargs)
Create a tag in GraceDB.

(task)gwcelery.tasks.gracedb.create_voevent(*args, **kwargs)
Create a VOEvent.

Returns The filename of the new VOEvent.

Return type str

(task)gwcelery.tasks.gracedb.download(*args, **kwargs)
Download a file from GraceDB.

(task)gwcelery.tasks.gracedb.expose(*args, **kwargs)
Expose an event to the public.

Notes

If expose_to_public is False, then this because a no-op.

(task)gwcelery.tasks.gracedb.get_events(*args, **kwargs)
Get events from GraceDB.

(task)gwcelery.tasks.gracedb.get_event(*args, **kwargs)
Retrieve an event from GraceDB.

(task)gwcelery.tasks.gracedb.get_search(*args, **kwargs)
Retrieve the search field of an event from GraceDB.

38 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

(task)gwcelery.tasks.gracedb.get_labels(*args, **kwargs)
Get all labels for an event in GraceDB.

(task)gwcelery.tasks.gracedb.get_log(*args, **kwargs)
Get all log messages for an event in GraceDB.

(task)gwcelery.tasks.gracedb.get_superevent(*args, **kwargs)
Retrieve a superevent from GraceDB.

(task)gwcelery.tasks.gracedb.replace_event(*args, **kwargs)
Get an event from GraceDB.

(task)gwcelery.tasks.gracedb.upload(*args, **kwargs)
Upload a file to GraceDB.

(task)gwcelery.tasks.gracedb.get_superevents(*args, **kwargs)
List matching superevents in gracedb.

Parameters

• *args – arguments passed to GraceDb.superevents()

• **kwargs – keyword arguments passed to GraceDb.superevents()

Returns superevents – The list of the superevents.

Return type list

(task)gwcelery.tasks.gracedb.update_superevent(*args, **kwargs)
Update superevent information. Wrapper around updateSuperevent()

Parameters

• superevent_id (str) – superevent uid

• t_start (float) – start of superevent time window, unchanged if None

• t_end (float) – end of superevent time window, unchanged if None

• t_0 (float) – superevent t_0, unchanged if None

• preferred_event (str) – uid of the preferred event, unchanged if None

(task)gwcelery.tasks.gracedb.create_superevent(*args, **kwargs)
Create new superevent in GraceDB with graceid

Parameters

• graceid (str) – graceid with which superevent is created.

• t0 (float) – t_0 parameter of superevent

• t_start (float) – t_start parameter of superevent

• t_end (float) – t_end parameter of superevent

• category (str) – superevent category

(task)gwcelery.tasks.gracedb.add_event_to_superevent(*args, **kwargs)
Add an event to a superevent in GraceDB.

6.5.11 gwcelery.tasks.inference module

Source Parameter Estimation with LALInference and Bilby.

6.5. gwcelery.tasks module 39

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

exception gwcelery.tasks.inference.NotEnoughData
Bases: Exception

Raised if found data is not enough due to the latency of data transfer

(task)gwcelery.tasks.inference.query_data(trigtime)
Continues to query data until it is found with gwdatafind and return frametypes for the data. If data is not found
in 86400 seconds = 1 day, raise NotEnoughData.

(task)gwcelery.tasks.inference.upload_no_frame_files(request, exc, traceback, su-
perevent_id)

Upload notification when no frame files are found.

Parameters

• request (Context (placeholder)) – Task request variables

• exc (Exception) – Exception rased by condor.submit

• traceback (str (placeholder)) – Traceback message from a task

• superevent_id (str) – The GraceDB ID of a target superevent

(task)gwcelery.tasks.inference.prepare_ini(frametype_dict, event, superevent_id=None)
Determine an appropriate PE settings for the target event and return ini file content for LALInference pipeline

gwcelery.tasks.inference.pre_pe_tasks(event, superevent_id)
Return canvas of tasks executed before parameter estimation starts

(task)gwcelery.tasks.inference._setup_dag_for_lalinference(coinc_psd,
ini_contents, rundir,
superevent_id)

Create DAG for a lalinference run and return the path to DAG.

Parameters

• coinc_psd (tuple of byte contents) – Tuple of the byte contents of coinc.
xml and psd.xml.gz

• ini_contents (str) – The content of online_lalinference_pe.ini

• rundir (str) – The path to a run directory where the DAG file exits

• superevent_id (str) – The GraceDB ID of a target superevent

Returns path_to_dag – The path to the .dag file

Return type str

(task)gwcelery.tasks.inference._setup_dag_for_bilby(event, rundir, pre-
ferred_event_id, superevent_id)

Create DAG for a bilby run and return the path to DAG.

Parameters

• event (json contents) – The json contents retrieved from gracedb.get_event()

• rundir (str) – The path to a run directory where the DAG file exits

• preferred_event_id (str) – The GraceDB ID of a target preferred event

• superevent_id (str) – The GraceDB ID of a target superevent

Returns path_to_dag – The path to the .dag file

Return type str

40 Chapter 6. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

(task)gwcelery.tasks.inference._condor_no_submit(path_to_dag)
Run ‘condor_submit_dag -no_submit’ and return the path to .sub file.

(task)gwcelery.tasks.inference.dag_prepare_task(rundir, superevent_id, pre-
ferred_event_id, pe_pipeline,
ini_contents=None)

Return a canvas of tasks to prepare DAG.

Parameters

• rundir (str) – The path to a run directory where the DAG file exits

• superevent_id (str) – The GraceDB ID of a target superevent

• preferred_event_id (str) – The GraceDB ID of a target preferred event

• pe_pipeline (str) – The parameter estimation pipeline used Either ‘lalinference’ OR
‘bilby’

• ini_contents (str) – The content of online_lalinference_pe.ini Required if
pe_pipeline == ‘lalinference’

Returns canvas – The canvas of tasks to prepare DAG

Return type canvas of tasks

(task)gwcelery.tasks.inference.job_error_notification(request, exc, traceback,
superevent_id, rundir,
pe_pipeline)

Upload notification when condor.submit terminates unexpectedly.

Parameters

• request (Context (placeholder)) – Task request variables

• exc (Exception) – Exception rased by condor.submit

• traceback (str (placeholder)) – Traceback message from a task

• superevent_id (str) – The GraceDB ID of a target superevent

• rundir (str) – The run directory for PE

• pe_pipeline (str) – The parameter estimation pipeline used Either lalinference OR
bilby

(task)gwcelery.tasks.inference._upload_url(pe_results_path, graceid, pe_pipeline)
Upload url of a page containing all of the plots.

(task)gwcelery.tasks.inference._get_result_contents(pe_results_path, filename)
Return the contents of a PE results file by reading it from the local filesystem.

(task)gwcelery.tasks.inference.clean_up(rundir)
Clean up a run directory.

Parameters rundir (str) – The path to a run directory where the DAG file exits

(task)gwcelery.tasks.inference.dag_finished(rundir, preferred_event_id, superevent_id,
pe_pipeline)

Upload PE results and clean up run directory

Parameters

• rundir (str) – The path to a run directory where the DAG file exits

• preferred_event_id (str) – The GraceDB ID of a target preferred event

6.5. gwcelery.tasks module 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

• superevent_id (str) – The GraceDB ID of a target superevent

• pe_pipeline (str) – The parameter estimation pipeline used Either lalinference OR
bilby

Returns tasks – The work-flow for uploading PE results

Return type canvas

(task)gwcelery.tasks.inference._download_psd(gid)
Download psd.xml.gz and return its content. If that file does not exist, return None.

(task)gwcelery.tasks.inference.start_pe(ini_contents, preferred_event_id, superevent_id,
pe_pipeline)

Run Parameter Estimation on a given event.

Parameters

• ini_contents (str) – The content of online_lalinference_pe.ini

• preferred_event_id (str) – The GraceDB ID of a target preferred event

• superevent_id (str) – The GraceDB ID of a target superevent

• pe_pipeline (str) – The parameter estimation pipeline used lalinference OR bilby

6.5.12 gwcelery.tasks.lvalert module

LVAlert client.

gwcelery.tasks.lvalert.handler = {'burst_cwb': [<@task: gwcelery.tasks.superevents.handle of gwcelery>], 'burst_olib': [<@task: gwcelery.tasks.superevents.handle of gwcelery>], 'cbc_gstlal': [<@task: gwcelery.tasks.superevents.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_cbc_event of gwcelery>], 'cbc_mbtaonline': [<@task: gwcelery.tasks.superevents.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_cbc_event of gwcelery>], 'cbc_pycbc': [<@task: gwcelery.tasks.superevents.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_cbc_event of gwcelery>], 'cbc_spiir': [<@task: gwcelery.tasks.superevents.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_cbc_event of gwcelery>], 'external_fermi': [<@task: gwcelery.tasks.external_triggers.handle_grb_lvalert of gwcelery>], 'external_snews': [<@task: gwcelery.tasks.external_triggers.handle_snews_lvalert of gwcelery>], 'external_swift': [<@task: gwcelery.tasks.external_triggers.handle_grb_lvalert of gwcelery>], 'mdc_superevent': [<@task: gwcelery.tasks.external_triggers.handle_grb_lvalert of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_snews_lvalert of gwcelery>, <@task: gwcelery.tasks.p_astro.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_superevent of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_posterior_samples of gwcelery>], 'superevent': [<@task: gwcelery.tasks.external_triggers.handle_grb_lvalert of gwcelery>, <@task: gwcelery.tasks.external_triggers.handle_snews_lvalert of gwcelery>, <@task: gwcelery.tasks.p_astro.handle of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_superevent of gwcelery>, <@task: gwcelery.tasks.orchestrator.handle_posterior_samples of gwcelery>]}
Function decorator to register a handler callback for specified LVAlert message types. The decorated function is
turned into a Celery task, which will be automatically called whenever a matching LVAlert message is received.

Parameters

• *keys – List of LVAlert message types to accept

• **kwargs – Additional keyword arguments for celery.Celery.task().

Examples

Declare a new handler like this:

@lvalert.handler('cbc_gstlal',
'cbc_spiir',
'cbc_pycbc',
'cbc_mbtaonline')

def handle_cbc(alert_content):
do work here...

6.5.13 gwcelery.tasks.orchestrator module

This module implements the alert orchestrator, which responsible for the vetting and annotation workflow to produce
preliminary, initial, and update alerts for gravitational-wave event candidates.

The orchestrator consists of two LVAlert message handlers:

42 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://celery.readthedocs.io/en/latest/reference/celery.html#celery.Celery.task

GWCelery Documentation, Release 0.9.0

• handle_superevent() is called for each superevent. It waits for a short duration of
orchestrator_timeout seconds for the selection of the superevent by the superevent manager
to stabilize, then performs data quality checks. If the data quality checks pass, then it calls
preliminary_alert() to copy annotations from the preferred event and send the preliminary GCN notice.

• handle_cbc_event() is called for each CBC event. It performs some CBC-specific annotations that de-
pend closely on the CBC matched-filter parameters estimates and that might influence selection of the preferred
event: rapid sky localization with BAYESTAR and rapid source classification.

Note that there is no equivalent of this task for burst events because both burst searches (cWB, LIB) have
integrated source localization and have no other annotations.

Preliminary Alerts

The flow chart below illustrates the operation of these two tasks.

6.5. gwcelery.tasks module 43

GWCelery Documentation, Release 0.9.0

handle_superevent

preliminary_alert

handle_cbc_event

LVAlert message
for new

superevent

Wait
orchestrator_timeout

seconds

Get preferred event

Check state vectors

Offline event
?

N_trials * FAR
 < threshold?

No

Vetoed by
state vectors?

Yes

Copy classification
(if CBC) and
sky map from
preferred event

No

Make sky
map plots

Send preliminary
GCN notice

Create GCN
circular draft

LVAlert for
file added

to CBC event

What is the
filename?

Download
psd.xml.gz

psd
.xml
.gz

Download
ranking_data

.xml.gz

ranking_data.xml.gz

Download
coinc.xml

Download
coinc.xml

Create
bayestar
.fits.gz

Create
p_astro

_gstlal.json

Create
source_
classi

fication
.json

44 Chapter 6. API Reference

GWCelery Documentation, Release 0.9.0

Initial and Update Alerts

The initial_alert() and update_alert() tasks create Initial and Update alerts respectively. At the moment,
there is no handler or user interface to trigger these tasks, and they must be invoked manually (see Command-Line
Tools). A flow chart for the initial alerts is shown below; the flow chart for update alerts is the same.

initial_alert

If sky map provided,
then make sky map plots

Send
GCN notice

Retraction Alerts

Likewise, the retraction_alert() task creates Retraction alerts, and at the moment must be invoked manually.
A flow chart is shown below.

retraction_alert

Send
GCN notice

Tasks

Tasks that comprise the alert orchestrator.

The orchestrator is responsible for the vetting and annotation workflow to produce preliminary, initial, and update
alerts for gravitational-wave event candidates.

6.5. gwcelery.tasks module 45

GWCelery Documentation, Release 0.9.0

(task)gwcelery.tasks.orchestrator.handle_superevent(alert)
Schedule annotations for new superevents.

After waiting for a time specified by the orchestrator_timeout configuration variable for the choice of
preferred event to settle down, this task performs data quality checks with gwcelery.tasks.detchar.
check_vectors() and calls preliminary_alert() to send a preliminary GCN notice.

(task)gwcelery.tasks.orchestrator.handle_cbc_event(alert)
Perform annotations for CBC events that depend on pipeline-specific matched-filter parameter estimates.

Notes

This LVAlert message handler is triggered by updates that include the file psd.xml.gz. The table below lists
which files are created as a result, and which tasks generate them.

File Task
bayestar.multiorder.fits gwcelery.tasks.bayestar.localize()
em_bright.json gwcelery.tasks.em_bright.classifier()
p_astro.json.json gwcelery.tasks.p_astro.compute_p_astro()

(task)gwcelery.tasks.orchestrator.handle_posterior_samples(alert)
Generate multi-resolution and flat-resolution fits files and skymaps from an uploaded HDF5 file containing
posterior samples.

(task)gwcelery.tasks.orchestrator._update_if_dqok(superevent_id, event_id)
Update preferred_event of superevent_id to event_id if DQOK label has been applied.

(task)gwcelery.tasks.orchestrator._get_preferred_event(superevent_id)
Determine preferred event for a superevent by querying GraceDB.

This works just like gwcelery.tasks.gracedb.get_superevent(), except that it returns only the
preferred event, and not the entire GraceDB JSON response.

(task)gwcelery.tasks.orchestrator._create_voevent(classification, *args, **kwargs)
Create a VOEvent record from an EM bright JSON file.

Parameters

• classification (tuple, None) – A collection of JSON strings, gener-
ated by gwcelery.tasks.em_bright.classifier() and gwcelery.tasks.
p_astro.compute_p_astro() or content of p_astro.json uploaded by gstlal re-
spectively; or None

• *args – Additional positional arguments passed to gwcelery.tasks.gracedb.
create_voevent().

• **kwargs – Additional keyword arguments passed to gwcelery.tasks.gracedb.
create_voevent().

Returns The filename of the newly created VOEvent.

Return type str

(task)gwcelery.tasks.orchestrator._create_label_and_return_filename(filename,
label,
graceid)

46 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

(task)gwcelery.tasks.orchestrator._leave_log_message_and_return_event_dict(event,
su-
perevent_id,
mes-
sage,
**kwargs)

Wrapper around gracedb.update_superevent() that returns the event dictionary.

(task)gwcelery.tasks.orchestrator._update_superevent_and_return_event_dict(event,
su-
perevent_id)

Wrapper around gracedb.update_superevent() that returns the event dictionary.

(task)gwcelery.tasks.orchestrator._proceed_if_no_advocate_action(filenames, su-
perevent_id)

Return filenames in case the superevent does not have labels indicating advocate action.

(task)gwcelery.tasks.orchestrator.preliminary_alert(event, superevent_id, an-
notation_prefix=”, initi-
ate_voevent=True)

Produce a preliminary alert by copying any sky maps.

This consists of the following steps:

1. Copy any sky maps and source classification from the preferred event to the superevent.

2. Create standard annotations for sky maps including all-sky plots by calling gwcelery.tasks.
skymaps.annotate_fits().

3. Create a preliminary VOEvent.

4. Send the VOEvent to GCN.

5. Apply the GCN_PRELIM_SENT label to the superevent.

6. Create and upload a GCN Circular draft.

(task)gwcelery.tasks.orchestrator._get_lowest_far(superevent_id)
Obtain the lowest FAR of the events in the target superevent.

(task)gwcelery.tasks.orchestrator.parameter_estimation(far_event, superevent_id)
Tasks for Parameter Estimation Followup with LALInference or Bilby

For LALInference, this consists of the following steps:

1. Prepare and upload an ini file which is suitable for the target event.

2. Start Parameter Estimation if FAR is smaller than the PE threshold.

For Bilby, this consists of the following steps:

1. Start Parameter Estimation if FAR is smaller than the PE threshold.

2. Upload of ini file during Parameter Estimation

(task)gwcelery.tasks.orchestrator.preliminary_initial_update_alert(filenames,
su-
perevent_id,
alert_type,
la-
bels=[])

Create and send a preliminary, initial, or update GCN notice.

Parameters

6.5. gwcelery.tasks module 47

GWCelery Documentation, Release 0.9.0

• filenames (tuple) – A list of the sky map, em_bright, and p_astro filenames.

• superevent_id (str) – The superevent ID.

• alert_type ({'preliminary', 'initial', 'update'}) – The alert type.

• labels (list) – A list of labels applied to superevent.

Notes

This function is decorated with gwcelery.tasks.gracedb.task rather than gwcelery.app.task
so that a synchronous call to gwcelery.tasks.gracedb.get_log() is retried in the event of GraceDB
API failures. If EM_COINC is in labels will create a RAVEN circular.

(task)gwcelery.tasks.orchestrator.initial_alert(filenames, superevent_id, labels=[])
Produce an initial alert.

This does nothing more than call preliminary_initial_update_alert() with
alert_type='initial'.

Parameters

• filenames (tuple) – A list of the sky map, em_bright, and p_astro filenames.

• superevent_id (str) – The superevent ID.

• labels (list) – A list of labels applied to superevent.

Notes

This function is decorated with gwcelery.tasks.gracedb.task rather than gwcelery.app.task
so that a synchronous call to gwcelery.tasks.gracedb.get_log() is retried in the event of GraceDB
API failures.

(task)gwcelery.tasks.orchestrator.update_alert(filenames, superevent_id)
Produce an update alert.

This does nothing more than call preliminary_initial_update_alert() with
alert_type='update'.

Parameters

• filenames (tuple) – A list of the sky map, em_bright, and p_astro filenames.

• superevent_id (str) – The superevent ID.

Notes

This function is decorated with gwcelery.tasks.gracedb.task rather than gwcelery.app.task
so that a synchronous call to gwcelery.tasks.gracedb.get_log() is retried in the event of GraceDB
API failures.

(task)gwcelery.tasks.orchestrator.retraction_alert(superevent_id)
Produce a retraction alert. This is currently just a stub and does nothing more than create and send a VOEvent.

48 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

6.5.14 gwcelery.tasks.p_astro module

Computation of p_astro by source category and utilities related to p_astro.json source classification files. See
Kapadia et al (2019), arXiv:1903.06881, for details.

(task)gwcelery.tasks.p_astro.compute_p_astro(snr, far, mass1, mass2, pipeline, instru-
ments)

Task to compute p_astro by source category.

Parameters

• snr (float) – event’s SNR

• far (float) – event’s cfar

• mass1 (float) – event’s mass1

• mass2 (float) – event’s mass2

• instruments (set) – set of instruments that detected the event

Returns p_astros – JSON dump of the p_astro by source category

Return type str

Example

>>> p_astros = json.loads(compute_p_astro(files))
>>> p_astros
{'BNS': 0.999, 'BBH': 0.0, 'NSBH': 0.0, 'Terrestrial': 0.001}

(task)gwcelery.tasks.p_astro.plot(contents)
Make a visualization of the source classification.

Parameters contents (str, bytes) – The contents of the p_astro.json file.

Returns png – The contents of a PNG file.

Return type bytes

Notes

The unusually small size of the plot (2.5 x 2 inches) is optimized for viewing in GraceDB’s image display
widget.

Examples

>>> from gwcelery.tasks import p_astro
>>> contents = '''
... {"Terrestrial": 0.001, "BNS": 0.65, "NSBH": 0.20,
... "MassGap": 0.10, "BBH": 0.059}
... '''
>>> p_astro.plot(contents)

(task)gwcelery.tasks.p_astro.handle(alert)
LVAlert handler to plot and upload a visualization of every p_astro.json that is added to a superevent.

6.5. gwcelery.tasks module 49

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

GWCelery Documentation, Release 0.9.0

Terrestrial

BBH

MassGap

NSBH

BNS

<1%

6%

10%

20%

65%

6.5.15 gwcelery.tasks.raven module

Search for GRB-GW coincidences with ligo-raven.

(task)gwcelery.tasks.raven.calculate_coincidence_far(superevent_id, exttrig_id, pre-
ferred_id, group)

Compute temporal coincidence FAR for external trigger and superevent coincidence by calling
ligo.raven.search.calc_signif_gracedb.

Parameters

• gracedb_id (str) – ID of the superevent trigger used by GraceDB

• group (str) – CBC or Burst; group of the preferred_event associated with the gracedb_id
superevent

(task)gwcelery.tasks.raven.calc_signif(search, se_id, exttrig_id, tl, th, incl_sky=False,
se_fitsfile=None)

Calculate FAR of GRB exttrig-GW coincidence

(task)gwcelery.tasks.raven.coincidence_search(gracedb_id, alert_object, group=None,
pipelines=[])

Perform ligo-raven search for coincidences. The ligo.raven.search.search method applies EM_COINC label on
its own.

Parameters

• gracedb_id (str) – ID of the trigger used by GraceDB

• alert_object (dict) – lvalert[‘object’]

• group (str) – Burst or CBC

• pipelines (list) – list of external trigger pipeline names

(task)gwcelery.tasks.raven.search(gracedb_id, alert_object, tl=-5, th=5, group=None,
pipelines=[])

Perform ligo-raven search for coincidences. The ligo.raven.search.search method applies EM_COINC label on
its own.

Parameters

• gracedb_id (str) – ID of the trigger used by GraceDB

• alert_object (dict) – lvalert[‘object’]

• tl (int) – number of seconds to search before

• th (int) – number of seconds to search after

50 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

GWCelery Documentation, Release 0.9.0

• group (str) – Burst or CBC

• pipelines (list) – list of external trigger pipelines for performing coincidence search
against

Returns

Return type list with the dictionaries of related gracedb events

(task)gwcelery.tasks.raven.raven_pipeline(raven_search_results, gracedb_id, alert_object,
gw_group)

Executes much of the full raven pipeline, including adding the external trigger to the superevent, calculating the
coincidence false alarm rate, and applying ‘EM_COINC’ to the appropriate events. Also a preimlinary alert will
be triggered if the coincidence passes threshold.

Parameters

• raven_search_results (list) – list of dictionaries of each related gracedb trigger

• gracedb_id (str) – ID of either a superevent or external trigger

• alert_object (dict) – lvalert[‘object’], either a superevent or an external event

• gw_group (str) – Burst or CBC

(task)gwcelery.tasks.raven.preferred_superevent(raven_search_results)
Chooses the superevent with the lowest far for an external event to be added to. This is to prevent errors from
trying to add one external event to multiple superevents.

Parameters raven_search_results (list) – list of dictionaries of each related gracedb trig-
ger

(task)gwcelery.tasks.raven._get_coinc_far_try_raven_alert(superevent, ext_event,
gracedb_id, su-
perevent_id, exttrig_id,
gw_group)

(task)gwcelery.tasks.raven.trigger_raven_alert(coinc_far_json, superevent, gracedb_id,
ext_event, gw_group)

Determine whether an event should be published as a public alert. If yes, then launches an alert by applying
EM_COINC to the preferred event.

All of the following conditions must be true for a public alert:

• The external event must be a threshold GRB or SNEWS event.

• If triggered on a SNEW event, the GW false alarm rate must pass snews_gw_far_threshold.

• The event’s RAVEN coincidence false alarm rate, weighted by the group-specific trials factor as spec-
ified by the preliminary_alert_trials_factor configuration setting, is less than or equal to
preliminary_alert_far_threshold.

Parameters

• coinc_far_json (dict) – Dictionary containing coincidence false alarm rate results
from RAVEN

• superevent (dict) – superevent dictionary

• gracedb_id (str) – ID of the trigger that launched RAVEN

• ext_event (dict) – external event dictionary

• gw_group (str) – Burst or CBC

6.5. gwcelery.tasks module 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

6.5.16 gwcelery.tasks.skymaps module

Annotations for sky maps.

(task)gwcelery.tasks.skymaps.annotate_fits(filecontents, versioned_filename, graceid,
tags)

Perform annotations on a sky map.

This function downloads a FITS file and then generates and uploads all derived images as well as an HTML
dump of the FITS header.

gwcelery.tasks.skymaps.is_3d_fits_file(filecontents)
Determine if a FITS file has distance information.

(task)gwcelery.tasks.skymaps.annotate_fits_volume(filecontents, *args)
Perform annotations that are specific to 3D sky maps.

(task)gwcelery.tasks.skymaps.fits_header(filecontents, filename)
Dump FITS header to HTML.

(task)gwcelery.tasks.skymaps.plot_allsky(filecontents)
Plot a Mollweide projection of a sky map using the command-line tool ligo-skymap-plot.

(task)gwcelery.tasks.skymaps.plot_volume(filecontents)
Plot a 3D volume rendering of a sky map using the command-line tool ligo-skymap-plot-volume.

(task)gwcelery.tasks.skymaps.flatten(filecontents, filename)
Convert a HEALPix FITS file from multi-resolution UNIQ indexing to the more common IMPLICIT indexing
using the command-line tool ligo-skymap-flatten.

(task)gwcelery.tasks.skymaps.skymap_from_samples(samplefilecontents)
Generate multi-resolution fits file from samples.

6.5.17 gwcelery.tasks.superevents module

Superevents are an abstraction to unify gravitational-wave candidates from multiple search pipelines. Each superevent
is intended to represent a single astrophysical event. A superevent consists of one or more event candidates, possibly
from different pipelines, that are neighbors in time. At any given time, one event belonging to the superevent is
identified as the preferred event.

This module provides the Superevent Manager, an LVAlert handler that creates and updates superevents whenever new
events are uploaded to GraceDB. It also checks whether the superevent qualifies to be sent out as a LIGO-Virgo public
alert.

Event candidates are only considered for membership in a superevent if their false alarm rate is less than or equal to
the value of the superevent_far_threshold configuration setting.

Each superevent has a time window described by a central time t_0, a start time t_start, and a end time t_end.
The central time t_0 is just the time of the preferred event. The start and end time are extended to encompass all of
the events that belong to the superevent (see get_ts()).

The first candidate reported from a search pipeline creates a superevent, with it being the preferred event. Subsequent
candidate additions to the superevent may result in a change of the superevent time window. The preferred event may
also be updated as more significant candidates are added. However, this will stop once a candidate passing the public
false alarm rate threshold (mentioned in preliminary_alert_far_threshold) is added to the superevent. At
this point, the preferred event is frozen and an automatically generated preliminary notice is sent with the data products
of the preferred event. Triggers could however still be added to the superevent as the preliminary alert and the ensuing
annotations are being processed. Once the preliminary alert is dispatched to the GCN broker, the preferred event
would be revised after a wait time of superevent_clean_up_timeout, following which a second automatic
preliminary alert would be issued.

52 Chapter 6. API Reference

https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/tool/ligo_skymap_plot.html
https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/tool/ligo_skymap_plot_volume.html
https://leo-singer.docs.ligo.org/ligo.skymap/ligo/skymap/tool/ligo_skymap_flatten.html

GWCelery Documentation, Release 0.9.0

Selection of the preferred event

When a new event is added to a superevent, it may or may not become the new preferred event. The preferred event is
selected by considering the following factors in order to resolve any ties:

1. Completeness: Would the event be complete, as determined by the function is_complete(), for sending an
automated public alert?

2. Public FAR threshold: Does the false alarm rate pass the false alarm rate threshold mentioned in
preliminary_alert_far_threshold?

3. Search group: Is it a CBC event or a burst event? CBC events takes precedence.

4. Number of detectors: How many detectors contributed data to the event? For CBC events, events with triggers
from more detectors take precedence.

5. Significance: For CBC events, which has the highest SNR? For burst events, which has the lowest FAR?

The selection of the preferred event from a pair of events is illustrated by the decision tree below.

6.5. gwcelery.tasks module 53

GWCelery Documentation, Release 0.9.0

Does only
one event pass

 public FAR
threshold?

Select the
publishable

event

Yes

Are the events
from different
search groups?

No

Is only
one event
complete?

No

Select the
complete

event

Yes

Select the
CBC event

Yes

From which
search group are

the events?

No

Does one event
involve more

detectors?

CBC

Select event
with the

lowest FAR

Burst

Select the events
with the greatest

number of detectors

Yes

Select event
with the

highest SNR

No

54 Chapter 6. API Reference

GWCelery Documentation, Release 0.9.0

Note: When a preferred event is assigned to a superevent, it may not be complete i.e., its data products may not have
been computed yet. Once all the data products of the preferred event is ready, the EM_READY label is applied to the
superevent.

The preferred event is frozen once an event candidate passing the public false alarm rate threshold is added to the
superevent. This is denoted by the application of the EM_Selected label on the superevent.

When the preliminary alert has been dispatched to the GCN broker, the GCN_PRELIM_SENT label is applied to the
superevent which is used to revise the preferred event and launch a second preliminary alert.

The second preliminary is sent even if the preferred event stays unchanged after the revision. In this case, it contains
the same content as the first preliminary alert.

The application of ADVNO before the launching of the second preliminary alert stops the process. A retraction notice
is sent instead.

Tasks

Module containing the functionality for creation and management of superevents.

• There is serial processing of triggers from low latency pipelines.

• Dedicated superevent queue for this purpose.

• Primary logic to respond to low latency triggers contained in process() function.

gwcelery.tasks.superevents.REQUIRED_LABELS_BY_GROUP = {'burst': {'SKYMAP_READY'}, 'cbc': {'EMBRIGHT_READY', 'PASTRO_READY', 'SKYMAP_READY'}}
These labels should be present on an event to consider it to be complete.

gwcelery.tasks.superevents.FROZEN_LABEL = 'EM_Selected'
This label indicates that the superevent manager should make no further changes to the preferred event.

gwcelery.tasks.superevents.READY_LABEL = 'EM_READY'
This label indicates that a preferred event has been assigned and it has all data products required to make it ready
for annotations.

(task)gwcelery.tasks.superevents.handle(payload)
Respond to lvalert nodes from low-latency search pipelines and delegate to process() for superevent man-
agement.

(task)gwcelery.tasks.superevents.process(*args, **kwargs)
Respond to payload and serially processes them to create new superevents, add events to existing ones

Parameters payload (dict) – LVAlert payload

gwcelery.tasks.superevents.get_category(event)
Get the superevent category for an event.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns

Return type {‘mdc’, ‘test’, ‘production’}

gwcelery.tasks.superevents.get_ts(event)
Get time extent of an event, depending on pipeline-specific parameters.

• For CWB, use the event’s duration field.

• For oLIB, use the ratio of the event’s quality_mean and frequency_mean fields.

6.5. gwcelery.tasks module 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

GWCelery Documentation, Release 0.9.0

• For all other pipelines, use the superevent_d_t_start and superevent_d_t_end configuration
values.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns

• t_0 (float) – Segment center time in GPS seconds.

• t_start (float) – Segment start time in GPS seconds.

• t_end (float) – Segment end time in GPS seconds.

gwcelery.tasks.superevents.get_snr(event)
Get the SNR from the LVAlert packet.

Different groups and pipelines store the SNR in different fields.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns snr – The SNR.

Return type float

gwcelery.tasks.superevents.get_instruments(event)
Get the instruments that contributed data to an event.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns The set of instruments that contributed to the event.

Return type set

gwcelery.tasks.superevents.get_instruments_in_ranking_statistic(event)
Get the instruments that contribute to the false alarm rate.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns The set of instruments that contributed to the ranking statistic for the event.

Return type set

Notes

The number of instruments that contributed data to an event is given by the instruments key of the GraceDB
event JSON structure. However, some pipelines (e.g. gstlal) have a distinction between which instruments
contributed data and which were considered in the ranking of the candidate. For such pipelines, we infer which
pipelines contributed to the ranking by counting only the SingleInspiral records for which the chi squared field
is non-empty.

For PyCBC Live in the O3 configuration, an empty chi^2 field does not mean that the detector did not contribute
to the ranking; in fact, all detectors listed in the SingleInspiral table contribute to the significance even if the
chi^2 is not computed for some of them. Hence PyCBC Live is handled as a special case.

(task)gwcelery.tasks.superevents.select_preferred_event(events)
Select the preferred event out of a list of events, typically contents of a superevent, based on keyfunc().

Parameters events (list) – list of event dictionaries

56 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list

GWCelery Documentation, Release 0.9.0

gwcelery.tasks.superevents.is_complete(event)
Determine if a G event is complete in the sense of the event has its data products complete i.e. has PAS-
TRO_READY, SKYMAP_READY, EMBRIGHT_READY for CBC events and the SKYMAP_READY label
for the Burst events. Test events are not processed by low-latency infrastructure and are always labeled complete.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

gwcelery.tasks.superevents.should_publish(event)
Determine whether an event should be published as a public alert.

All of the following conditions must be true for a public alert:

• The event’s offline flag is not set.

• The event should be complete based on is_complete().

• The event’s false alarm rate, weighted by the group-specific trials factor as specified by
the preliminary_alert_trials_factor configuration setting, is less than or equal to
preliminary_alert_far_threshold.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns should_publish – True if the event meets the criteria for a public alert or False if it does
not.

Return type bool

gwcelery.tasks.superevents.keyfunc(event)
Key function for selection of the preferred event.

Return a value suitable for identifying the preferred event. Given events a and b, a is preferred over b if
keyfunc(a) > keyfunc(b), else b is preferred.

Parameters event (dict) – Event dictionary (e.g., the return value from gwcelery.tasks.
gracedb.get_event()).

Returns key – The comparison key.

Return type tuple

Notes

Tuples are compared lexicographically in Python: they are compared element-wise until an unequal pair of
elements is found.

6.6 gwcelery.tools module

Custom Celery subcommands.

The subcommand that is implemented in gwcelery.tools.submodule can be invoked from the command line
as gwcelery submodule.

6.6. gwcelery.tools module 57

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://celery.readthedocs.io/en/latest/userguide/extending.html#extending-subcommands

GWCelery Documentation, Release 0.9.0

6.6.1 gwcelery.tools.condor module

Shortcuts for HTCondor commands to manage deployment of GWCelery on LIGO Data Grid clusters.

These commands apply to the GWCelery instance that is running in the current working directory.

gwcelery.tools.condor.get_constraints()

gwcelery.tools.condor.run_exec(*args)

gwcelery.tools.condor.running()
Determine if GWCelery is already running under HTCondor.

gwcelery.tools.condor.submit(app)
Submit all GWCelery jobs to HTCondor (if not already running).

gwcelery.tools.condor.resubmit(app)
Remove any running GWCelery jobs and resubmit to HTCondor.

gwcelery.tools.condor.rm(app)
Remove all GWCelery jobs.

gwcelery.tools.condor.hold(app)
Put all GWCelery jobs on hold.

gwcelery.tools.condor.release(app)
Release all GWCelery jobs from hold status.

gwcelery.tools.condor.q(app)
Show status of all GWCelery jobs.

class gwcelery.tools.condor.CondorCommand(app=None, get_app=None, no_color=False,
stdout=None, stderr=None, quiet=False,
on_error=None, on_usage_error=None)

Bases: celery.bin.base.Command

Shortcuts for HTCondor commands to manage deployment of GWCelery on LIGO Data Grid clusters.

These commands apply to the GWCelery instance that is running in the current working directory.

add_arguments(parser)

run(func=None, **kwargs)

6.6.2 gwcelery.tools.flask module

Flask web application for manually triggering certain tasks.

gwcelery.tools.flask.main()
Flask web application for manually triggering certain tasks.

class gwcelery.tools.flask.FlaskCommand(app=None, get_app=None, no_color=False,
stdout=None, stderr=None, quiet=False,
on_error=None, on_usage_error=None)

Bases: celery.bin.base.Command

Flask web application for manually triggering certain tasks.

add_arguments(parser)

run(*args, flask_args=(), **kwargs)

58 Chapter 6. API Reference

https://celery.readthedocs.io/en/latest/reference/celery.bin.base.html#celery.bin.base.Command
https://celery.readthedocs.io/en/latest/reference/celery.bin.base.html#celery.bin.base.Command

GWCelery Documentation, Release 0.9.0

6.6.3 gwcelery.tools.nagios module

A Nagios plugin for monitoring GWCelery.

class gwcelery.tools.nagios.NagiosPluginStatus
Bases: enum.IntEnum

Nagios plugin status codes.

OK = 0

WARNING = 1

CRITICAL = 2

UNKNOWN = 3

exception gwcelery.tools.nagios.NagiosCriticalError
Bases: Exception

An exception that maps to a Nagios status of CRITICAL.

gwcelery.tools.nagios.get_active_queues(inspector)

gwcelery.tools.nagios.get_active_lvalert_nodes(inspector)

gwcelery.tools.nagios.get_expected_queues(app)

gwcelery.tools.nagios.get_expected_lvalert_nodes(app)

gwcelery.tools.nagios.get_active_voevent_peers(inspector)

gwcelery.tools.nagios.check_status(app)

class gwcelery.tools.nagios.NagiosCommand(app=None, get_app=None, no_color=False,
stdout=None, stderr=None, quiet=False,
on_error=None, on_usage_error=None)

Bases: celery.bin.base.Command

A Nagios plugin for monitoring GWCelery.

run(**kwargs)

6.7 gwcelery.util module

Miscellaneous utilities that are useful inside many different tasks.

gwcelery.util.handling_system_exit()
Catch any SystemExit and re-raise it as RuntimeError.

Some Celery tasks in this package call main functions of command-line tools from other packages. Those
main functions may try to exit the Python interpreter (if, for example, the command-line arguments are not
understood).

Catch any SystemExit exception. If the exit code is zero (signifying a normal exit status), then ignore the
exception. If the exit code is nonzero (signifying an error exit status), then re-raise it as a RuntimeError so
that the error is reported but the Celery worker is not killed.

class gwcelery.util.PromiseProxy(*args, **kwargs)
Bases: object

6.7. gwcelery.util module 59

https://nagios-plugins.org/doc/guidelines.html
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/exceptions.html#Exception
https://celery.readthedocs.io/en/latest/reference/celery.bin.base.html#celery.bin.base.Command
https://nagios-plugins.org/doc/guidelines.html
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object

GWCelery Documentation, Release 0.9.0

gwcelery.util.NamedTemporaryFile(content=None, **kwargs)
Convenience wrapper for tempfile.NamedTemporaryFile() that writes some data to the file before
handing it to the calling code.

Parameters

• content (str, bytes, None) – Initial contents of the file.

• **kwargs – Additional keyword arguments to pass to tempfile.
NamedTemporaryFile().

6.8 gwcelery.voevent module

Embed a Comet VOEvent broker and subscriber into a Celery worker by extending Celery with bootsteps.

gwcelery.voevent.install(app)
Register the VOEvent subsystem in the application boot steps.

6.8.1 gwcelery.voevent.bootsteps module

class gwcelery.voevent.bootsteps.Reactor(consumer, **kwargs)
Bases: gwcelery.voevent.bootsteps.VOEventBootStep

Run the global Twisted reactor in background thread.

The Twisted reactor is a global run loop that drives all Twisted services and operations. This boot step starts
the Twisted reactor in a background thread when the Celery consumer starts, and stops the thread when the
Consumer terminates.

name = 'Twisted reactor'

create(consumer)
Create the step.

start(consumer)

stop(consumer)

class gwcelery.voevent.bootsteps.Broadcaster(consumer, **kwargs)
Bases: gwcelery.voevent.bootsteps.TwistedService

Comet-based VOEvent broadcaster.

Run a Comet-based VOEvent broadcaster (comet.protocol.broadcaster.
VOEventBroadcasterFactory). Starts after the Reactor bootstep.

A few configuration options are available:

• voevent_broadcaster_address: The address to bind to, in host:port format.

• voevent_broadcaster_whitelist: A list of hostnames, IP addresses, or CIDR address
ranges from which to accept connections.

The list of active connections is made available inspection with the gwcelery inspect stats command
under the voevent-broker-peers key.

name = 'VOEvent broadcaster'

create_service(consumer)

info(consumer)

60 Chapter 6. API Reference

https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
https://comet.readthedocs.io/en/stable/index.html
https://celery.readthedocs.io/en/latest/userguide/extending.html
https://celery.readthedocs.io/en/latest/userguide/workers.html#worker-inspect

GWCelery Documentation, Release 0.9.0

class gwcelery.voevent.bootsteps.Receiver(consumer, **kwargs)
Bases: gwcelery.voevent.bootsteps.TwistedService

VOEvent receiver.

Run a Comet-based VOEvent receiver (comet.protocol.subscriber.
VOEventSubscriberFactory). Starts after the Reactor bootstep.

A few configuration options are available:

• voevent_receiver_address: The address to connect to, in host:port format.

The list of active connections is made available inspection with the gwcelery inspect stats command
under the voevent-receiver-peers key.

name = 'VOEvent receiver'

requires = ('celery.worker.consumer:Connection', step:Twisted reactor{('celery.worker.consumer:Connection',)}, 'celery.worker.consumer.tasks:Tasks')

create_service(consumer)

info(consumer)

6.8.2 gwcelery.voevent.logging module

Integration between the Celery, Twisted, and Comet logging systems.

gwcelery.voevent.logging.after_setup_logger(logger, loglevel, **kwargs)
Celery signal handler to set up capturing of all log messages from Comet and Twisted.

• Celery uses the Python standard library’s logging module. Twisted has its own separate logging fa-
cility. Use Twisted’s PythonLoggingObserver to forward all Twisted log messages to the Python
logging module.

• Comet uses the Twisted logging facility, but has its own separate management of log severity level (e.g.,
info, debug). Set Comet’s log level to match Celery’s.

6.8.3 gwcelery.voevent.util module

VOEvent-related utilities.

gwcelery.voevent.util.get_host_port(address)
Split a network address of the form host:port.

Parameters network (str) – The network address.

Returns

• host (str) – The hostname, or an empty string if missing.

• port (int, None) – The port number, or None if missing.

gwcelery.voevent.util.get_local_ivo(app)
Create an IVOID to identify this application in VOEvent Transport Protocol packets.

Returns A local IVOID composed of the machine’s fully qualified domain name and the Celery
application name (for example, ivo://emfollow.ligo.caltech.edu/gwcelery).

Return type str

gwcelery.voevent.util.get_network(address)
Find the IP network prefix for a hostname or CIDR notation.

6.8. gwcelery.voevent module 61

https://celery.readthedocs.io/en/latest/userguide/workers.html#worker-inspect
https://celery.readthedocs.io/en/latest/userguide/signals.html
https://docs.python.org/3/library/logging.html#module-logging
https://twistedmatrix.com/documents/current/api/twisted.python.log.PythonLoggingObserver.html
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GWCelery Documentation, Release 0.9.0

Parameters address (str) – A hostname, such as ligo.org, or an IP address prefix in CIDR
notation, such as 127.0.0.0/8.

Returns An object representing the IP address prefix.

Return type ipaddress.IPv4Network

6.8.4 gwcelery.voevent.signals module

Definitions of custom Celery signals related to VOEvents.

These signals allow us to keep the VOEvent broker code decoupled from any GCN-specific logic. Notably, it allows
us to keep all of the details of the GCN-specific “Notice Type” concept out of gwcelery.voevent.

gwcelery.voevent.signals.voevent_received = <Signal: voevent_received providing_args={'xml_document'}>
Fired whenever a VOEvent is received.

Parameters xml_document (comet.utility.xml.xml_document) – The XML docu-
ment that was received. The raw file contents are available as xml_document.raw_bytes.
The lxml.etree representation of the document is available as xml_document.
element.

62 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Network
https://celery.readthedocs.io/en/latest/userguide/signals.html

CHAPTER 7

Contributing

Contributors may familiarize themselves with Celery itself by going through the First Steps with Celery tutorial.

7.1 Development model

GWCelery operates on a fork-and-merge development model (see GitLab basics for an introduction).

To contribute to GWCelery development, follow these steps:

1. Create a personal fork of GWCelery.

2. Make your changes on a branch.

3. Open a merge request.

Note that GWCelery uses fast-forward merges.

7.2 Where new code should go

New code will generally consist of adding Celery tasks. Tasks are organized by functionality into submodules of
gwcelery.tasks. If your new task does not match with one of the existing submodules, please create a new
submodule.

7.3 Guidelines for tasks

• Tasks should be short. When deciding where a new task should go, start from the following loose rules of
thumb:

1. If it’s less than a screenful of code, and related to functionality in an existing module, then put the code in
a new task in that module.

63

https://celery.readthedocs.io/en/latest/getting-started/first-steps-with-celery.html#first-steps
https://git.ligo.org/help/gitlab-basics/README.md
https://git.ligo.org/emfollow/gwcelery/forks/new
https://git.ligo.org/help/user/project/merge_requests/fast_forward_merge.md
https://celery.readthedocs.io/en/latest/userguide/tasks.html#guide-tasks

GWCelery Documentation, Release 0.9.0

2. If it’s up to a few screenfuls of code, or not related to functionality in an existing module, then try to break
it into a few smaller functions or tasks and put it in a new module.

3. If it’s more than a few screenfuls of code, or adds many additional dependencies, then it should go in a
separate package.

See also the note on Granularity in the Celery manual’s Tips and Best Practices section.

• Tasks should avoid saving files to disk. Output should be placed directly in GraceDB. Temporary files that are
written in /tmp are OK but should be cleaned up promptly.

See also the Celery manual’s notes on Data locality and State.

• Dependencies should be installable by pip. Dependencies of tasks should be listed in the requirements.txt file
so that they are installed automatically when GWCelery is installed with pip.

There are two extra steps involved in making changes to the dependencies:

1. The Sphinx-generated documentation (that is to say, this manual) is generally built without most of the
dependencies installed. Whenever you add a new package to requirements.txt, you should also add any
modules that are imported from that package to the autodoc_mock_imports list in the Sphinx con-
figuration file, doc/conf.py.

2. We use pipenv to make the precise versions of packages reproducible in our deployment. If you make
changes to requirements.txt, then run pipenv update and commit the changes to Pipfile.lock.

7.4 Unit tests

Unit tests and code coverage measurement are run automatically for every branch and for every merge request. New
code contributions must have 100% test coverage. Modifications to existing code must not decrease test coverage. To
run the unit tests and measure code coverage, run the following commands in the top directory of your local source
checkout:

$ pip install pytest-cov
$ python setup.py test --addopts='--cov --cov-report html'

This will save a coverage report that you can view in a web browser as htmlcov/index.html.

7.5 Code style

Code should be written in the PEP 8 style and must pass linting by Flake8. To check code style, run the following
commands in the top of your source directory:

$ pip install flake8 pep8-naming
$ flake8 --show-source .

7.6 Documentation

Documentation strings should be written in the Numpydoc style.

To build the documentation, run the following command in the top of your source directory:

$ python setup.py build_sphinx

64 Chapter 7. Contributing

https://celery.readthedocs.io/en/latest/userguide/tasks.html#task-granularity
https://celery.readthedocs.io/en/latest/userguide/tasks.html#task-best-practices
https://celery.readthedocs.io/en/latest/userguide/tasks.html#task-data-locality
https://celery.readthedocs.io/en/latest/userguide/tasks.html#task-state
https://git.ligo.org/emfollow/gwcelery/blob/master/requirements.txt
https://pip.pypa.io/
https://git.ligo.org/emfollow/gwcelery/blob/master/doc/conf.py
https://pipenv.readthedocs.io/
https://git.ligo.org/emfollow/gwcelery/blob/master/Pipfile.lock
https://www.python.org/dev/peps/pep-0008
http://flake8.pycqa.org/en/latest/
http://numpydoc.readthedocs.io/

GWCelery Documentation, Release 0.9.0

Then to view the documentation, open the file build/sphinx/html/index.html in your favorite web browser.

7.6. Documentation 65

GWCelery Documentation, Release 0.9.0

66 Chapter 7. Contributing

CHAPTER 8

Deployment

8.1 Continuous deployment

GWCelery is automatically deployed using GitLab’s continuous deployment features, configured through the project’s
.gitlab-ci.yml file. Deployment can be managed through the GitLab project’s Environments page.

Python dependencies in the deployment environment are managed automatically using pipenv.

There are two instances of GWCelery that are running on the LIGO-Caltech computing cluster and that are managed
in this manner:

• Playground: The playground instance is re-deployed on every push to master that passes the unit tests. It uses
the gwcelery.conf.playground configuration preset.

• Production: The production instance is re-deployed only when manually triggered through GitLab. It uses the
gwcelery.conf.production configuration preset.

When we observe that the Playground instance shows correct end-to-end behavior, we have the option of triggering
a re-deployment to Production. Deployment to production should preferably occur at a release. The procedure for
performing a release is described below.

Danger: It is possible to start an interactive session inside the GWCelery production environment by logging in
to the LIGO-Caltech cluster, but this measure should be reserved for emergencies only.

Any manual changes to the environment may disrupt the logging and monitoring subsystems. Any files that
are manually changed, added to, or removed from the deployment environment will not be captured in version
control and may be rolled back without warning the next time that the continuous deployment is triggered.

8.2 Making a new release

We always prepare releases from the tip of the master branch. GitLab is configured through the project’s .gitlab-
ci.yml file to automatically build and push any tagged release to the Python Package Index (PyPI). Follow these steps

67

https://git.ligo.org/emfollow/gwcelery/blob/master/.gitlab-ci.yml
https://git.ligo.org/emfollow/gwcelery/environments
https://pipenv.readthedocs.io/
https://git.ligo.org/emfollow/gwcelery/blob/master/.gitlab-ci.yml
https://git.ligo.org/emfollow/gwcelery/blob/master/.gitlab-ci.yml
https://pypi.org

GWCelery Documentation, Release 0.9.0

when issuing a release in order to maintain a consistent and orderly change log.

1. Check the pipeline status. Before you begin, first make sure that the unit tests, documentation, and packaging
jobs are passing. Consult the project’s GitLab pipeline status to make sure that all of the continuous integration
jobs are passing on master.

If necessary, fix any bugs that are preventing the pipeline from passing, push the changes to master, and repeat
until all jobs pass.

2. Update the change log. The first subsection of the change log file, CHANGES.rst, should have the title MAJOR.
MINOR.PATCH (unreleased), where MAJOR.MINOR.PATCH will be the version number of the new
release. Review the git commit log.

Make any necessary changes to CHANGES.rst so that this subsection of the change log accurately summarizes
all of the significant changes since the last release and is free of spelling, grammatical, or reStructuredText
formatting errors.

Review the list of changes and make sure that the new version number is appropriate. We follow SemVer very
loosely, and also generally bump at least the minor version number at the start of a new LSC/Virgo engineering
or observing run.

Commit and push any corrections to CHANGES.rst to master.

3. Complete the acceptance tests. Our acceptance tests consist of a manual checklist for verifying that the pipeline
satisfies certain requirements on the playground environment. The checklist is maintained as a GitLab issue
template and is under version control in the special directory .gitlab/issue_templates.

Create a new issue in GitLab. Set the title to Release version MAJOR.MINOR.PATCH . In the Choose
a template dropdown menu, select Create a Release. The description field will be automatically
populated with the checklist. Submit the issue.

Complete the items in the checklist and check them off one by one on the release issue before proceeding to the
next step.

68 Chapter 8. Deployment

https://git.ligo.org/emfollow/gwcelery/pipelines
https://git.ligo.org/emfollow/gwcelery/blob/master/CHANGES.rst
https://semver.org
https://docs.gitlab.com/ee/user/project/description_templates.html
https://docs.gitlab.com/ee/user/project/description_templates.html
https://git.ligo.org/emfollow/gwcelery/tree/master/.gitlab/issue_templates
https://git.ligo.org/emfollow/gwcelery/issues/new

GWCelery Documentation, Release 0.9.0

4. Tag the release. Change the title of the first section of CHANGES.rst to MAJOR.MINOR.PATCH
(YYYY-MM-DD) where YYYY-MM-DD is today’s date. Commit with the message Update changelog
for version MAJOR.MINOR.PATCH; closes #N , where N is the release issue’s number.

Create a git tag to mark the release by running the following command:

$ git tag vMAJOR.MINOR.PATCH -m "Version MAJOR.MINOR.PATCH"

5. Create a change log section for the next release. Add a new section to CHANGES.rst with the title
NEXT_MAJOR.NEXT_MINOR.NEXT_PATCH (unreleased), where NEXT_MAJOR.NEXT_MINOR.
NEXT_PATCH is a provisional version number for the next release. Add a single list item with the text No
changes yet. Commit with the message Back to development.

6. Push the new tag and updated change log. Push the new tag and updated change log:

git push && git push --tags

7. Wait a couple minutes, and then verify that the new release has been published on our PyPI project page,
https://pypi.org/project/gwcelery/.

8.2. Making a new release 69

https://pypi.org/project/gwcelery/

GWCelery Documentation, Release 0.9.0

8. If desired, navigate to the GitLab project’s Environments page and trigger a deployment to production.

70 Chapter 8. Deployment

https://git.ligo.org/emfollow/gwcelery/environments

CHAPTER 9

Changelog

9.1 0.9.0 (2019-11-23)

This is the initial release of GWCelery for O3b.

• Changes related to configuration settings

– Use the Redis server that is provided by the operating system (e.g. as a systemd unit) rather than starting
our own Redis server. This prevents a race condition between the shutdown of Redis and the shutdown of
the workers that caused the workers to hang on shutdown.

– Update HTCondor accounting group from O2 to O3.

– Increase throughput for sky localization tasks by offloading processing of the openmp Celery queue to 40
workers that are launched via HTCondor on specially configured cluster nodes.

– Use mpich as the MPI runtime for parameter estimation.

– Use different HTCondor accounting groups for Celery workers depending on whether GWCelery is run-
ning in the playground environment (ligo.dev.o3.cbc.pe.bayestar) or the production environ-
ment (ligo.prod.o3.cbc.pe.bayestar).

– Drop support for Python 3.6 so that we can use the check_output keyword argument that was added
to suprocess.run() in Python 3.7.

– Pin gwpy to <= 0.15.0 since the updated gwpy fails to read Virgo’s state vector.

– Update ligo-followup-advocate version to 1.1.3.

• Changes related to superevent/orchestrator design

– Add event completeness to publishability criterion. All three of PASTRO_READY, SKYMAP_READY,
and EMBRIGHT_READY will be used to evaluate event completeness for CBC events. Only the
SKYMAP_READY label will be used to evaluate completeness for burst events.

– Use EM_Selected to freeze the preferred event of a superevent and launch a preliminary alert.

– Make sub-threshold annotations independent of annotations for superevents which pass public alert thresh-
old.

71

GWCelery Documentation, Release 0.9.0

– Prevent second preliminary to be sent in the event of any advocate action. Previously, this was only being
prevented for ADVNO.

– Make skymaps from parameter estimation public automatically.

• Changes related to online parameter estimation

– Move a comment attached to posterior samples to the corresponding skymap.

– Add bilby online parameter inference workflow.

– Fix approximant name used for automatic parameter estimation.

– Start parameter estimation on mock events.

– Add acceptance tests of parameter estimation.

– Use nodes dedicated to online PE also for playground events so that the test runs do not get stuck due to
the lack of resources.

– Add spins in online PE on playground events so that embright probabilities are calculated based on the
posterior samples without errors.

– Remove skymap generation from PE DAG so that it will not be generated twice.

– Notify which pe pipeline failed for the failure of pe condor jobs.

• Changes related to external coincidences

– Create RAVEN circular if EM_COINC label is applied to superevent.

– Make coincidence FAR synchronous within RAVEN pipeline to fix race condition.

– Remove redundant SNEWS handler key.

– Remove generation of em_coinc circular when EM_COINC label is applied.

– Apply EM_COINC to preferred event when coincidence passes RAVEN publishing conditions.

– Attempt fetching and uploading Fermi skymap upon receinving GCN notice.

• Changes related to skymap generation

– Revert back to running BAYESTAR for all G events.

– Pass the -j flag to ligo-skymap-from-samples to speed up skymap generation.

• Changes related to automated data quality checks

– Create omegascans for all detectors upon creation of new superevent.

– Run check_vectors upon the creation of a superevent. This will allow subthreshold superevents to be
annotated with DQOK or DQV label.

• Changes to the Flask dashboard

– Teach preliminary alert form in Flask dashboard to present a dropdown of events sorted by the preferred
event criterion.

– Incorporate update circular into flask app.

• Other changes

– Add a task to em_bright.py to compute and upload source properties upon the upload of
LALInference.posterior_samples.hdf5.

72 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

9.2 0.8.7 (2019-09-14)

• Update ligo-raven version to 1.17.

9.3 0.8.5.1 (2019-09-04)

This is a non-sequential bugfix release based on version 0.8.5.1 to fix the following issue:

• Fix a lethal bug in em_bright.py introduced in version 0.8.5. The bug would incorrectly use the snr as the
maximum mass of the NS and therefore the source property estimation for pipelines apart from gstlal would be
grossly incorrect.

9.4 0.8.6 (2019-09-01)

• Update ligo-raven version to 1.16.

• Fix a bug that prevented retrying of failed GraceDB API calls in the superevent manager.

• Add a retry for one more potential GraceDB API failure in the initial and update alert workflows.

• In the playground environment only, upload each mock event several times in rapid succession with random
jitter in order to simulate multiple pipeline uploads.

• Expose events to the public prior to sending any kind of alert: preliminary, initial, update, or retraction. Previ-
ously this behavior only occurred for preliminary alerts, which created the unusual and undesirable possibility of
a public GCN for an event that is not public. As before, events are only exposed to the public in the production
environment, and not in the playground environment.

• Propagate sky map file extensions (as in bayestar.fits.gz,1) to the URLs that are presented in GCN
notices.

• Generate flattened FITS files and sky map visualizations for all superevents, even those that do not rise to the
public alert threshold. Note that as a side effect all superevents will have the EM_Selected label applied,
since it is used as a semaphore to trigger the annotations. The ADVREQ label used to serve double duty as the
semaphore and also as the wake-up call for follow-up advocates, but now it only serves the latter purpose.

The feature of generating flattened FITS files and sky map plots for all superevents comes as a request from the
Fermi and Swift sub-threshold searches.

• Delay running BAYESTAR until the superevent’s preferred event has stabilized. BAYESTAR is the most compu-
tationally intensive postprocessing task and running it for all events belonging to a superevent was a bottleneck.

• For the playground environment only, decrease the timeout for stabilization of the preferred event from 5 minutes
to 2 minutes, which is comparable to how long it has taken recent events to settle. This does not affect the
configuration of the production environment.

• Changed handle_cbc_event handler to call gstlal trained ML based inference for source property compu-
tation for gstlal triggers.

• Apply EM_COINC to superevent and external event in parallel.

9.5 0.8.5 (2019-08-23)

• Made raven.py tests more robust and have increased coverage.

9.2. 0.8.7 (2019-09-14) 73

GWCelery Documentation, Release 0.9.0

• Removed the feature of p-astro and em_bright reading mean counts, livetimes or ML classifiers from emfol-
low/data; moved them to lscsoft/p_astro as package data. Added back the test_tasks_p_astro.py that
was accidentally taken out in v0.8.0. Pinned p_astro == 0.8.0.

9.6 0.8.4 (2019-08-16)

• Fixed a bug in gracedb.create_tag to handle the scenario when multiple log messages exist for the same
filename. The tag is applied to the most recent log message.

• Retry GraceDB API calls that fail due to receiving incomplete or malformed HTTP responses, as indicated
by http.client.HTTPException exceptions. This should work around the increased incidence of
RemoteDisconnected exceptions that we have seen recently, and that caused a delay in sending out the
preliminary alert for S190814bv.

9.7 0.8.3 (2019-08-09)

• Enable Redis integration for Sentry error reporting.

• Downgrade lalsuite to 6.54 since lalinference_pipe in 6.59 has a minor bug, which breaks automatic
parameter estimation.

• Include the number of participating detectors in the preferred event selection criterion for compact binaries:
3-detector events should be preferred over 2-detector events, and 2-detector events over 1-detector events, on
the basis of more accurate localization. Ties are still broken by SNR.

• Catch SystemExit exceptions from Python command line tools called in Celery tasks and re-raise them as
RuntimeError exceptions so that they do not cause the workers to exit.

9.8 0.8.2 (2019-08-02)

• Apply the public tag to data products before sending out an update GCN notice. This will prevent human
errors related to not exposing LALInference files before sending a GCN notice.

• Don’t read the entire HTTP response from GraceDB POST requests. We only need the HTTP status code. This
change might speed up GraceDB API calls a little bit.

• Increase preliminary alert timeout back to 5 minutes.

• Make gracedb.create_superevent, gracedb.update_superevent and gracedb.
add_event_to_superevent idempotent by catching the HTTPError from GraceDB that occurs
if the superevent has already been created.

• Fix bug where neither the space-time nor temporal coincidence far is calculated if external sky map is unavail-
able.

• Update ligo.skymap to 0.1.9. This version changes the data type of the multi-resolution HEALPix format’s
UNIQ column from an unsigned integer to a signed integer.

Starting with this version, the Linux builds of ligo.skymap are compiled and optimized using the Intel C Com-
piler.

• Change the trials factor for CBC searches to 4, since SPIIR is performing a single search, and that for burst to
3, since oLIB is not currently in operation.

74 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

9.9 0.8.1 (2019-07-29)

• Downgrade lalsuite to 6.59.

• Revert change that tried to fix incorrect key for querying external events. The keys were correct before.

9.10 0.8.0 (2019-07-26)

• Assign gwcelery.tasks.skymaps.plot_volume tasks a reduced Celery priority as compared to
gwcelery.tasks.bayestar.localize so that the latter are given preference. This ought to speed
up the preparation of preliminary GCN notices because only the latter are required for GCNs but both kinds of
tasks compete for slots in the resource-intensive OpenMP queue.

• Reduce priority for CBC annotation tasks for events that do not pass the public alert threshold.

• Update lalsuite to 6.60.

• Ensure gracedb calls to create and update superevents are retried in the event of transient GraceDB API errors.

• Update ligo-raven version to 1.15. Apply EM_COINC label in raven.py to give more control and prevent race
conditions.

• Use the space-time coincidence FAR as the default for RAVEN, use the temporal coincidence FAR when sky
maps are not available.

• Check if GRB is sub-threshold, set search to be ‘SubGRB’. Pass search through external triggers pipeline and
RAVEN.

• Tune Celery’s result_expires setting from its default value of one day to five minutes. Since we pass large
byte strings as task arguments and return values, one day is too long to keep task tombstones in the database.
This adjustment should reduce the memory footprint of the Redis server during periods with very high rates of
GraceDB uploads.

The downside is that task details will remain browsable in Flower for a much shorter period.

• Remove p_astro_gstlal.py module, corresponding test modules, and documentation; p_astro will be reported as
a pipeline product from gstlal. The computation of p_astro for all other pipelines is unaffected.

• Fix EM_COINC bug where it is being over-applied to superevents.

• Fix bug where wrong key was called for querying external events.

9.11 0.7.1 (2019-07-12)

• The initial alert workflow will now consider only *.fits.gz sky maps and not *.fits sky maps for GCN
Notices. It was an oversight that we did not exclude *.fits files from the list of extensions to consider when
we updated the handling of multiresolution sky maps.

• Catch and retry HTTP 429 (“Too Many Requests”) errors from GraceDB.

• Enable Sentry integration for Tornado in order to capture errors from the Flower console.

• Fix file extensions for LALInference sky map PNG files: they should be named LALInference.png, not
LALInference.multiorder.png.

• Increase the Redis server’s log verbosity in order to help diagnose Redis client connection dropouts.

9.9. 0.8.1 (2019-07-29) 75

GWCelery Documentation, Release 0.9.0

• Run sky map plotting and annotation tasks asynchronously so that they do not block sending preliminary alerts.
Their outputs are only for human consumption; they are not needed in order to prepare GCN Notices.

9.12 0.7.0 (2019-06-21)

• Trigger a preliminary alert for a superevent upon the first time that the preferred event is set to an event that
meets the public alert criterion.

This fixes a longstanding issue that has prevented automated preliminary alerts from being sent so far. The
preferred event at the instant that the timeout ended did not meet the public alert criterion, but a preferred event
that was selected some tens of seconds later did.

• Decrease preliminary alert timeout to one minute.

• The combined effect of these changes should be to decrease the latency for producing preliminary alerts from 7
minutes to 2 minutes.

9.13 0.6.3 (2019-06-14)

• Work around a Celery canvas bug that prevented LALInference postprocessing from completing.

• Fix a copy-paste error that caused DQV and INJ labels to be ignored when determining whether to send a
preliminary alert.

• Move RAVEN time coincidence windows to the application configuration.

• Document the acceptence tests checklist in the instructions for preparing a release.

• Update ligo-raven to version 1.14.

9.14 0.6.2 (2019-06-07)

• Add a dependency on dnspython to silence the following warning message from SleekXMPP:

DNS: dnspython not found. Can not use SRV lookup.

• Pin some recently updated dependencies of Celery that caused unit test failures: amqp <= 2.4.2, kombu <=
4.5.0, vine <= 1.3.0.

• Prevent subthreshold GRBs with low reliability from being processed as external events.

• Add a task in orchestrator.py to generate FITS files and sky map images automatically whenever an HDF5
posterior samples file is uploaded.

• Remove special-case handling of single-instrument events. Now, the eligibility of an event for a public alert is
determined only on the basis of its false alarm rate.

• Run parameter estimation on nodes dedicted to online-PE.

• Emcoinc circular is triggered when RAVEN uploads a coincident FAR.

• Pin scipy since scipy>=1.3.0 removes an interpolation function which lalinference postprocessing requires.

76 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

9.15 0.6.1 (2019-05-24)

• Work around a bug in the Sentry Python SDK that caused excessive reporting of certain GraceDB exceptions
that are listed in tasks’ autoretry_for settings. See getsentry/sentry-python#370.

• Change the name of BAYESTAR localization files to bayestar.multiorder.fits to distinguish them
from flat-resolution HEALPix files, which are still named bayestar.fits.gz.

• Reimplement LVAlert listener as a Celery bootstep to avoid needing to track a singleton task using a Redis lock,
because Redis locks do not play nicely with Redis persistence. The --lvalert command line option must
now be passed in order to enable the LVAlert listener.

• Turn on Redis database persistence so that Celery task state is preserved across restarts.

• Add expose_to_public setting to disable exposing GraceDB events to the public in all environments except
for production.

• Update to the latest version of GWPy and un-pin Matplotlib because GWPy now supports Matplotlib 3.1.

• Pin LALSuite to version 6.54 because LALInference in LALSuite 6.55 is not compatible with Python 3.

9.16 0.6.0 (2019-05-20)

• Work around a bug in complex Celery canvases (see celery/celery#5512) that prevented initial GCN notices from
being sent. As a side effect of this workaround, the initial, update, and retraction canvases will not automatically
expose events to the public.

The preliminary alert canvas still does expose events to the public, so under normal circumstances, the follow-
up advocate should not have to manually do that. However, if the event has not been exposed to the public
for whatever reason, then the follow-up advocate should expose it to the public manually before applying the
ADVOK label. See emfollow/followup-advocate-guide!2.

• Reduce the false alarm rate threshold for parameter estimation to decrease cluster load.

• Remove redundant LVAlert subscription in handle_lvalert_grb to prevent double calls to RAVEN.

• Read template weights for P_astro from hdf5 file using h5py for speedup.

• Require matplotlib < 3.1 becuase matplotlib 3.1 breaks importing gwpy:

/usr/local/lib/python3.7/site-packages/gwpy/plot/rc.py:79: in <module>
rcParams.get('text.latex.preamble', []) + tex.MACROS),

E TypeError: can only concatenate str (not "list") to str

• Make gwcelery.tasks.gracedb.get_superevents and gwcelery.tasks.gracedb.
get_events take any number of keyword arguments to be passed to corresponding client methods.

• Update the superevent t_0 field whenever the preferred event changes.

9.17 0.5.7 (2019-05-13)

• If the VOEvent broker is disabled by setting voevent_broker_whitelist to an empty list, then suppress
the normal error message that would occur when attempting to send a VOEvent when there are no broker
connections.

• Rearrange preliminary alert workflow so that sky map plots are generated for the newly added FITS file rather
than an older FITS file that coincidentally has the same name.

9.15. 0.6.1 (2019-05-24) 77

https://github.com/getsentry/sentry-python/issues/370
https://github.com/celery/celery/issues/5512
https://git.ligo.org/emfollow/followup-advocate-guide/merge_requests/2

GWCelery Documentation, Release 0.9.0

• Have gwcelery.detchar.check_vectors task apply all GraceDB log messages in order to increase
robustness to recoverable GraceDB API errors.

• Port over majority of P_astro code from gwcelery to the p-astro package.

• Use cleaned data for parameter estimation.

• The DQOK and DQV labels should be mutually exclusive. When gwcelery.tasks.detchar.
check_vectors adds one of the DQOK or DQV labels, it will now first remove the other label.

• Change exception in VOEevent parsing of Fermi subtreshold alerts to match real incoming alerts.

• Update Celery to 4.3.0.

• Automatically select the most up-to-date calibration uncertainties for parameter estimation.

9.18 0.5.6 (2018-05-08)

• Extend the orchestrator_timeout to 300s and the pe_timeout to 345s. The previous timeout was not
sufficient for the online pipelines to upload all of their possible candidates, hence the extension.

9.19 0.5.5 (2019-05-03)

• Cycle through llhoft, high latency frames, and low latency frames in detchar’s cache creation.

• Add explanations on options in online_pe.jinja2 for those who start parameter estimation based on the ini files
uploaded to GraceDB.

• Calculate horizon distance with psd.xml.gz to determine the upper limit of distance prior for parameter estima-
tion.

• Start parameter estimation when the lowest FAR of the events in a superevent is lower than the threshold.

• Update the calibration uncertainties used for parameter estimation.

• Handle an exception in VOEvent parsing of Fermi subthreshold alerts due to different param names.

• Stop uploading corner plots of intrinsic parameters.

• Connect to different GCN servers to receive alerts in the production and playground environments, because
GCN does not support multiple receiver connections from the same client IP address to the same server.

• Change the preferred event assignment logic to not let accidental candidates like G330298 which have low FAR
but high SNR values to become the preferred event. From now on, superevents.should_publish takes
maximum precedence for selecting the preferred event. The same is also used by orchestrator to expose events.

• Update RAVEN coinc FAR task call which uses string params versus un-pickleable class object params.

• Make sure to consume the entire response from every GraceDB API request. This will ensure that GraceDB
API call has completed before the pipeline continues, and will fix errors like we encountered with S190426c
where the pipeline would march along before uploads had finished.

• Apply ADVREQ label earlier in the preliminary alert workflow.

• Update LALSuite to version 6.54. We are now using a stable version again instead of a nightly build.

• Add Nagios checks for GCN connectivity.

• Improve uploaded comments so that it is easily understood which event has triggered parameter estimation.

78 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

9.20 0.5.4 (2019-05-01)

• Provide a value for terrestrial count for P_astro for non-gstlal pipelines that is consistent with the FAR threshold
used.

9.21 0.5.3 (2019-04-17)

• Update ligo-followup-advocate to 0.0.28.

• Stop using unreviewed cleaned data for parameter estimation.

• Update detchar check to analyze full template duration for CBC events.

9.22 0.5.2 (2019-04-15)

• Fix typo in gracedb.get_instruments: there was the attribute lookup single.ifo, which should
have been the dictionary lookup single[ifo].

• Fix gwcelery.tasks.p_astro_other.choose_snr for gstlal. This method did not previously expect
to be called for gstlal, since it is typically only invoked for other pipelines. However, there is one case when
choose_snr is invoked for gstlal, which is when the ranking_data file from gstlal is corrupted with NaNs,
causing P_astro for gstlal to fail. Thus, choose_snr has now been fixed to also handle gstlal as a pipeline.

9.23 0.5.1 (2019-04-12)

• Changed default for em-bright from 2.83 to 3.0 M_sun to be consistent with notices.

9.24 0.5.0 (2019-04-12)

• Give permissions to read the files under parameter estimation run directories to non-owner people so that rota
people can check their progresses. The naming convention of the run directories changed.

• EM-Bright ML classification requires review. Until then, give answer based on low-latency estimates.

• Compute P_astro with mass-based template weighting. Template weights are now keyed on template parame-
ters, rather than bin numbers. This should make P_astro immune to binning conventions.

• Add form to manually send a preliminary GCN Notice.

• Fix a typo in gwcelery.sub that caused the Flower dashboard to fail to start.

• Round iDQ p(glitch) to 3 decimal places in GraceDB log message.

• Switch log telemetry from the on-premise instance of Sentry at Caltech to a cloud-hosted subscription to sen-
try.io.

• In the playground configuration, the gwcelery.tasks.gcn.validate task was producing false alarms
because the GCN receiver was receiving VOEvents from the production instance, which would certainly differ in
content from VOEvents in the playground instance. Fix this by having gwcelery.tasks.gcn.validate
discard all VOEvents if the VOEvent broadcaster is disabled.

• Update ligo-followup-advocate to 0.0.27.

9.20. 0.5.4 (2019-05-01) 79

GWCelery Documentation, Release 0.9.0

• Wait for 1 minute before parameter estimation in case the preferred event is updated with high latency.

• Ensure that P_astro accounts for very loud MBTA and PyCBC events, whose FAR saturate at certain low values
depending on instrument combination, but whose SNRs can increase indefinitely.

• When a user triggers a Preliminary or Update alert through the Flask interface, create a GraceDB log message
to record the username.

• The Flask interface will now show a confirmation dialog before sending any alerts.

• Add a terrifying warning to the Flask interface to make it clear that the interface is live.

9.25 0.4.3 (2019-04-05)

• Now that LIGO/Virgo alerts are public, switch the GCN listener that we use to confirm receipt of our own GCN
Notices from a managed, private connection to an anonymous, public connection.

• Migrate the Flask and Flower dashboards from ldas-jobs.ligo.caltech.edu to emfollow.ligo.caltech.edu. The new
URLs are:

– https://emfollow.ligo.caltech.edu/gwcelery

– https://emfollow.ligo.caltech.edu/flower

– https://emfollow.ligo.caltech.edu/playground/gwcelery

– https://emfollow.ligo.caltech.edu/playground/flower

Remove the htaccess file from our public_html directory, since the reverse proxy configuration is now the re-
sponsibility of system administrators.

• Display the GWCelery version number in the Flask application.

• Add visualizations for p_astro.json source classification files.

9.26 0.4.2 (2019-04-05)

• Calculation of number of instruments is now unified across superevent manager and orchestrator using gracedb
method get_number_of_instruments.

• Enable automated preliminary alerts for all pipelines because disabling them in the orchestrator introduced some
issues due to the criteria for releasing a public alert drifting away from the definition of a the preferred event
of a superevent. We will instead trust pipelines that are still under review will upload events to the playground
rather than the production environment.

9.27 0.4.1 (2019-04-02)

• Fixed normalization issues with p_astro_gstlal.py; normalization was being applied in the wrong places during
Bayes factor computation.

• Require celery < 4.3.0 because that version breaks the nagios unit tests.

• Update false alarm rate trials factors for preliminary alerts.

• Enable sending GCN notices for fully automated preliminary alerts.

• Add threshold_snr option in online_pe.jinja2, which is used to determine the upper limit of distance prior.

80 Chapter 9. Changelog

https://emfollow.ligo.caltech.edu/gwcelery
https://emfollow.ligo.caltech.edu/flower
https://emfollow.ligo.caltech.edu/playground/gwcelery
https://emfollow.ligo.caltech.edu/playground/flower

GWCelery Documentation, Release 0.9.0

• Use the same criteria to decide whether to expose an event publicly in GraceDB as we use to decide whether to
issue a public alert.

• Do not issue public alerts for single-instrument GW events.

• Disable automated preliminary alerts for all pipelines but gstlal and cWB due to outstanding review items for
the other pipelines.

9.28 0.4.0 (2019-03-29)

• This is the penultimate release before LIGO/Virgo observing run 3 (O3).

• Make detchar results easier to read by formatting as HTML table.

• Allow iDQ to label DQV onto events based on p(glitch). Adjustable by pipeline.

• Move functions in tasks/lalinference.py to lalinference_pipe.py in lalsuite.

• Take into account calibration errors in automatic Parameter Estimation.

• Do not use margphi option for automatic Parameter Estimation with ROQ waveform since that option is not
compatible with ROQ likelihood.

• Adjust WSGI middleware configuration to adapt to a change in Werkzeug 0.15.0 that broke redirects on form
submission in the Flask app. See https://github.com/pallets/werkzeug/pull/1303.

• Use the new ligo.lw module for reading gstlal’s ranking_data.psd.xml.gz files, because these files
are now written using the new LIGO-LW format that uses integer row IDs.

• Use clean data for parameter estimation.

• Use production accounting group for PE runs on gracedb events.

• Change threshold from log-likelihood equals 6 to a dynamic threshold that ensures that all gstlal events uploaded
to gracedb get assigned a P_astro value.

9.29 0.3.1 (2019-03-18)

• Fix a bug in translating keys from source_classification.json to keyword arguments for GraceDB.
createVOEvent that caused VOEvents to be missing the HasNS and HasRemnant fields.

• FAR threshold for sending preliminary notices for CBC is changed to 1 per 2 months.

• Upload log files when LALInference parameter estimation jobs fail or are aborted.

• Changed the filename source_classification.json to em_bright.json.

• Change condor log directory from /var/tmp to ~/.cache/condor since gwcelery workers have separate /var/tmp
when they are running as condor jobs and that causes problems when gwcelery tries to read log files.

• Limit the maximum version of gwpy to 0.14.0 in order to work around a unit test failure that started with gwpy
0.14.1. See https://git.ligo.org/emfollow/gwcelery/issues/95.

• Upload a diff whenever a LIGO/Virgo VOEvent that we receive from GCN does not match the original that we
sent.

• Wait for low-latency or high-latency frame files being transferred to the cluster before parameter estimation
starts.

9.28. 0.4.0 (2019-03-29) 81

https://github.com/pallets/werkzeug/pull/1303
https://git.ligo.org/emfollow/gwcelery/issues/95

GWCelery Documentation, Release 0.9.0

9.30 0.3.0 (2019-03-01)

• Fixed exponent in the expression of foreground count in p_astro_other task.

• Run the sky map postprocessing and add the PE_READY tag when LALInference finishes.

• Include EM_COINC triggered circulars to upload to the superevent page.

• p-astro reads mean values from a file on CIT, new mass-gap category added. Removed redundant functions from
p_astro_gstlal module.

• Continuous deployment on the Caltech cluster now uses a robot keytab and gsissh instead of SSH keys and
vanilla ssh because the new my.ligo.org SSH key management does not support scripted access.

• Improve the isolation between the production and playground instances of GWCelery by deploying them under
two separate user accounts on the Caltech cluster.

• Add functionality for em_bright task to query emfollow/data for trained machine learning classifier and
report probabilities based on it.

9.31 0.2.6 (2019-02-12)

• Report an environment tag to Sentry corresponding to the GWCelery configuration module (production,
test, playground, or development) in order to differentiate log messages from different deployments.

• The gwcelery condor command now identifies jobs that it owns by matching both the job batch name and
the working directory. This makes it possible to run multiple isolated instances of GWCelery under HTCondor
on the same cluster in different working directories.

• Change the conditions for starting parameter estimation. For every CBC superevent, create an online_pe.
ini file suitable for starting LALInference. However, only start LALInference if the false alarm rate is less
than once per 2 weeks.

• Determine PSD segment length for LALInference automatically based on data availability and data quality.

• Add a Flask-based web interface for manually triggering certain tasks such as sending updated GCN notices.

9.32 0.2.5 (2019-02-01)

• Pass along the GWCelery version number to Sentry.

• Upload stdout and stderr when dag creation fails and notifications when submitted job fails in Parameter Esti-
mation

• Allow detchar module’s create_cache to use gwdatafind when frames are no longer in llhoft.

• The Nagios monitoring plugin will now report on the status of LVAlert subscriptions.

• Change trials factor to 5 for both CBC and Burst categories. CBC includes the 4 CBC pipelines. Burst includes
the 4 searches performed in total by the 2 Burst pipelines. An additional external coincidence search.

• Automatically set up PE ini file depending on source parameters reported by detection pipelines.

82 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

9.33 0.2.4 (2018-12-17)

• Fix broken links in log messages due to changes in GraceDB URL routes.

• Whenever we send a public VOEvent using GCN, also make the corresponding VOEvent file in GraceDB public.

• Don’t include Mollweide projection PNG file in VOEvents. The sky map visualizations take longer to generate
than the FITS files themselves, so they were unnecessarily slowing down the preliminary alerts.

• Preliminary GCN FAR threshold is modified to be group (CBC, Burst, Test) specific.

9.34 0.2.3 (2018-12-16)

• Update frame type used in LALInference Parameter Estimation.

• Handle cases where p_astro_gstlal.compute_p_astro returns NaNs by falling back to
p_astro_other.compute_p_astro.

• Fix a bug that prevented annotations that are specific to 3D sky maps from being performed for multi-resolution
FITS files.

• Fetch the graceid for the new event added from the gracedb logs since superevent packet does not provide
information as to which event is added in case of type event_added.

9.35 0.2.2 (2018-12-14)

• Add error handling for nonexistent iDQ frames in detchar module.

9.36 0.2.1 (2018-12-14)

• Update detchar module configuration for ER13.

9.37 0.2.0 (2018-12-14)

• This is the release of GWCelery for ER13.

• Run two separate instances of Comet, one to act as a broker and one to act as a client. This breaks a cycle that
would cause retransmission of GRB notices back to GCN.

• Fix a race condition that could cause preliminary alerts to be sent out for events for which data quality checks
had failed.

• Unpin the redis package version because recent updates to Kombu and Billiard seem to have fixed the Nagios
unit tests.

• Start the Comet VOEvent broker as a subprocess intead of using multiprocessing and go back to using
PyGCN instead of Comet as the VOEvent client. This is a workaround for suspected instability due to a bad
interaction between redis-py and multiprocessing.

• Reset Matplotlib’s style before running ligo-skymap-plot and ligo-skymap-plot-volume. There
is some other module (probably in LALSuite) that is messing with the rcparams at module scope, which was
causing Mollweide plots to come out with unusual aspect ratios.

9.33. 0.2.4 (2018-12-17) 83

GWCelery Documentation, Release 0.9.0

• Run check_vectors upon addition of an event to a superevent if the superevent already has an DQV label.

• Do not check the DMT-DQ_VECTOR for pipelines which use gated h(t).

• Remove static example VOEvents from the Open Alert Users Guide. We never used them because activating
sample alerts got help until ER13.

• Disable running the Orchestrator for test events for ER13. After ER13 is over, we need to carefully audit the
code and make sure that test events are handled appropriately.

• Enable public GraceDB entries and public GCNs for mock (MDC) events. For real events in ER13, disable pub-
lic preliminary GCNs. Instead, advocate signoffs will trigger making events and GCN notices public: ADVOK
for initial notices and ADVNO for retraction notices.

• Include source classification output (BNS/NSBH/BBH/Terrestrial) in GCN Notices.

9.38 0.1.7 (2018-11-27)

• Pin the redis package version at <3 because the latest version of redis breaks the Nagios unit tests.

• Ditch our own homebrew VOEvent broker and use Comet instead.

• In addition to traditional flat, fixed-nside sky maps, BAYESTAR will now also upload an experimental multires-
olution format described in LIGO-G1800186-v4.

9.39 0.1.6 (2018-11-14)

• Update URL for static example event.

9.40 0.1.5 (2018-11-13)

• Add tasks for submitting HTCondor DAGs.

• Add a new module, gwcelery.tasks.lalinference, which provides tasks to start parameter estimation
with LALInference and upload the results to GraceDB.

• Depend on lalsuite nightly build from 2018-11-04 to pick up changes to LALInference for Python 3 support.

• Send static example VOEvents from the Open Alert Users Guide. This will provide a stream of example alerts
for astronomers until GraceDB is ready for public access.

• Add trials factor correction to the event FAR when comparing against FAR threshold to send out preliminary
GCN.

• Require that LIGO/Virgo VOEvents that we receive from GCN match the original VOEvents from GraceDB
byte-for-byte, since GCN will now pass through our VOEvents without modification.

9.41 0.1.4 (2018-10-29)

• Work around a bug in astropy.visualization.wcsaxes that affected all-sky plots when Matplotlib’s text.
usetex rcparam is set to True (https://github.com/astropy/astropy/issues/8004). This bug has evidently been
present since at least astropy 1.3, but was not being triggered until recently: it is likely that some other package
that we import (e.g. lalsuite) is now globally setting text.usetex to True.

84 Chapter 9. Changelog

https://dcc.ligo.org/LIGO-G1800186-v4/public
https://github.com/astropy/astropy/issues/8004

GWCelery Documentation, Release 0.9.0

• A try except is added around updateSuperevent to handle a bad request error from server side when updating
superevent parameters which have nearby values.

• Send automatic preliminary alerts only for events with a false alarm rate below a maximum value specified by a
new configuration variable, preliminary_alert_far_threshold.

• State vector vetoes will not suppress processing of preliminary sky maps and source classification. They will
still suppress sending preliminary alerts.

• Set open_alert to True for all automated VOEvents.

9.42 0.1.3 (2018-10-26)

• Preliminary GCN is not sent for superevents created from offline gw events.

• Add dqr_json function to gwcelery.tasks.detchar, which uploads a DQR-compatible json to
GraceDB with the results of the detchar checks.

• Depend on ligo.skymap >= 0.0.17.

• Fix a bug in sending initial, update, and retraction GCN notices: we were sending the VOEvent filenames instead
of the file contents.

9.43 0.1.2 (2018-10-11)

• Setted vetted flag to true for all initial, update, and retraction alerts that are triggered by GraceDB signoffs.

• Write GraceDB signoffs, instead of just labels, to simulate initial and retraction alerts for mock events, because
merely creating the ADVNO or ADVOK label does not cause GraceDB to erase the ADVREQ label. This change
makes mock alerts more realistic.

• Change filename of cWB sky maps from skyprobcc_cWB.fits to cWB.fits.gz for consistency with
other pipelines.

• Any time that we send a VOEvent, first change the GraceDB permissions on the corresponding superevent so
that it is visible to the public. Note that this has no effect during the ongoing software engineering runs because
LVEM and unauthenticated access are currently disabled in GraceDB.

9.44 0.1.1 (2018-10-04)

• Use the public tag instead of the lvem tag to mark preliminary sky maps for public access rather than LV-EM
partner access. Note that GraceDB has not yet actually implemented unauthenticated access, so this should have
no effect during our ongoing software engineering runs.

• Add check_idq function to detchar module, which reads probabilities generated by iDQ.

• Automated DQV labels should not trigger retraction notices because they prevent preliminary notices from being
sent in the first place.

• The criterion for selecting a superevent’s preferred event now prefers multiple-detector events to single-detector
events, with precedence over source type (CBC versus burst). Any remaining tie is broken by using SNR for
CBC and FAR for Burst triggers.

• By default, initial and update alerts will find and send the most recently added public sky map.

9.42. 0.1.3 (2018-10-26) 85

GWCelery Documentation, Release 0.9.0

• The initial and update sky maps no longer perform sky map annotations, because they would only be duplicating
the annotations performed as part of the preliminary alert.

• Mock events now include example initial and retraction notices. Two minutes after each mock event is uploaded,
there will be either an ADVOK or an ADVNO label applied at random, triggering either an initial or a retraction
notice respectively.

• Depend on ligo-gracedb >= 2.0.1 in order to pull in a bug fix for VOEvents with ProbHasNS or ProbHasRemnant
set to 0.0.

• Use the sentry-sdk package instead of the deprecated raven package for Sentry integration.

9.45 0.1.0 (2018-09-26)

• Separated the external GCN listening handlers into two: one that listens to GCNs about SNEWS triggers and
another that listens to Fermi and Swift.

• Fixed calls to the raven temporal coincidence search so that search results separate SNEWS triggers from Fermi
and Swift.

• Add space-time FAR calculation for GRB and GW superevent coincidences. This only runs when skymaps from
both triggers are available to download.

• Add human vetting for initial GCN notices. For each new superevent that passes state vector checks, the
ADVREQ label is applied. Rapid response team users should set their GraceDB notification preferences to
alert them on ADVREQ labels. If a user sets the ADVOK label, then an initial notice is issued. If a user sets the
ADVNO label, then a retraction notice is issued.

• Update the LVAlert host for gracedb-playground.ligo.org.

• Add experimental integration with Sentry for log aggregation and error reporting.

• Track API and LVAlert schema changes in ligo-gracedb 2.0.0.

9.46 0.0.31 (2018-09-04)

• Refactor external trigger handling to separate it from the orchestrator.

• Fixed a bug in the VOEvent broker to only issue “iamalive” messages after sending the first VOEvent.

• Pass group argument to set time windows appropriately when performing raven coincidence searches. Search in
the [-600, 60]s range and [-5, 1]s range around external triggers for Burst events and CBC events respectively.
Similarly, search in the [-60, 600]s and [-1, 5]s range around Burst and CBC events for external triggers.

• Compute and upload FAR for GRB external trigger/superevent coincidence upon receipt of the EM_COINC
label application to a superevent.

• Add continuous integration testing for Python 3.7, and run test suite against all supported Python versions (3.6,
3.7).

• Update ligo.skymap to 0.0.15.

9.47 0.0.30 (2018-08-02)

• Manage superevents for production, test, and MDC events separately.

86 Chapter 9. Changelog

https://sentry.io/

GWCelery Documentation, Release 0.9.0

• Add some more validation of LIGO/Virgo VOEvents from GCN.

• Remove now-unused task gwcelery.tasks.orchestartor.continue_if.

• Add check_vectors run for external triggers.

• Change the preferred event selection criteria for burst events to be FAR instead of SNR.

• Add gwcelery nagios subcommand for Nagios monitoring.

• Incorporate Virgo DQ veto streams into check_vectors

• Update ligo-raven to 1.3 and ligo-followup-advocate to 0.0.11.

9.48 0.0.29 (2018-07-31)

• Add a workflow graph to superevents module documentation.

• Add gwcelery condor resubmit as a shortcut for gwcelery condor rm; gwcelery condor
submit.

• Fix deprecation warning due to renaming of ligo.gracedb.rest.Gracedb.createTag to ligo.
gracedb.rest.Gracedb.addTag.

• Update ligo-gracedb to 2.0.0.dev1.

9.49 0.0.28 (2018-07-25)

• Add injection checks to check_vector.

• Bitmasks are now defined symbolically in detchar.

• Refactor configuration so that it is possible to customize settings through an environment variable.

9.50 0.0.27 (2018-07-22)

• The preferred event for superevents is now decided based on higher SNR value instead of lower FAR in the case
of a tie between groups.

• A check for the existence of the gstlal trigger database is performed so that compute_p_astro does not return
None.

9.51 0.0.26 (2018-07-20)

• Fix spelling of the label that is applied to events after p_astro finishes, changed from P_ASTRO_READY to
PASTRO_READY.

• Run p_astro calculation for mock events.

• Overhaul preliminary alert pipeline so that it is mostly feature complete for both CBC and Burst events, and
uses a common code path for both types. Sky map annotations now occur for both CBC and Burst localizations.

9.48. 0.0.29 (2018-07-31) 87

GWCelery Documentation, Release 0.9.0

• Switch to using the pre-registered port 8096 for receiving proprietary LIGO/Virgo alerts on emfol-
low.ligo.caltech.edu. This means that the capability to receive GCNs requires setting up a site configuration
in advance with Scott Barthelmey.

Once we switch to sending public alerts exclusively, then we can switch back to using port 8099 for anonymous
access, requiring no prior site configuration.

9.52 0.0.25 (2018-07-19)

• Reintroduce pipeline-dependent pre/post peeks for check_vector after fixing issue where pipeline informa-
tion was being looked for in the wrong dictionary.

• check_vector checks all detectors regardless of instruments used, but only appends labels based on active
instruments.

• Fix a few issues in the GCN broker:

– Decrease the frequency of keepalive (“iamalive” in VOEvent Transport Protocol parlance) packets from
once a second to once a minute at the request of Scott Barthelmey.

– Fix a possible race condition that might have caused queued VOEvents to be thrown away unsent shortly
after a scheduled keepalive packet.

– Consume and ignore all keepalive and ack packets from the client so that the receive buffer does not
overrun.

• Add p_astro computation for gstlal pipeline. The copmutation is launched for all cbc_gstlal triggers.

9.53 0.0.24 (2018-07-18)

• Revert pipeline-dependent pre/post peeks for check_vector because they introduced a regression: it caused
the orchestrator failed without running any annotations.

9.54 0.0.23 (2018-07-18)

• Add timeout and keepalive messages to GCN broker.

• Update ligo-gracedb to 2.0.0.dev0 and ligo.skymap to 0.0.12.

• Add superevent duration for gstlal-spiir pipeline.

• Fix fallback for determining superevent duration for unknown pipelines.

• Make check_vector pre/post peeks pipeline dependent.

9.55 0.0.22 (2018-07-11)

• Process gstlal-spiir events.

• Create combined LVC-Fermi skymap in case of coincident triggers and upload to GraceDB superevent page.
Also upload the original external trigger sky map to the external trigger GraceDB page.

• Generalize conditional processing of complex canvases by replacing the continue_if_group_is() task
with a more general task that can be used like continue_if(group='CBC').

88 Chapter 9. Changelog

GWCelery Documentation, Release 0.9.0

• Add a check_vector_prepost configuration variable to control how much padding is added around an
event for querying the state vector time series.

This should have the beneficial side effect of fixing some crashes for burst events, for which the bare duration
of the superevent segment was less than one sample.

9.56 0.0.21 (2018-07-10)

• MBTA events in GraceDB leave the search field blank. Work around this in gwcelery.tasks.
detchar.check_vectors where we expected the field to be present.

• Track change in GraceDB JSON response for VOEvent creation.

9.57 0.0.20 (2018-07-09)

• After fixing some minor bugs in code that had not yet been tested live, sending VOEvents to GCN now works.

9.58 0.0.19 (2018-07-09)

• Rewrite the GCN broker so that it does not require a dedicated worker.

• Send VOEvents for preliminary alerts to GCN.

• Only perform state vector checks for detectors that were online, according to the preferred event.

• Exclude mock data challenge events from state vector checks.

9.59 0.0.18 (2018-07-06)

• Add detector state vector checks to the preliminary alert workflow.

9.60 0.0.17 (2018-07-05)

• Undo accidental configuration change in last version.

9.61 0.0.16 (2018-07-05)

• Stop listening for three unnecessary GCN notice types: SWIFT_BAT_ALARM_LONG,
SWIFT_BAT_ALARM_SHORT, and SWIFT_BAT_KNOWN_SRC.

• Switch to SleekXMPP for the LVAlert client, instead of PyXMPP2. Because SleekXMPP has first-class support
for publish-subscribe, the LVAlert listener can now automatically subscribe to all LVAlert nodes for which our
code has handlers. Most of the client code now lives in a new external package, sleek-lvalert.

9.56. 0.0.21 (2018-07-10) 89

http://sleekxmpp.com
http://jajcus.github.io/pyxmpp2/
https://git.ligo.org/emfollow/sleek-lvalert

GWCelery Documentation, Release 0.9.0

9.62 0.0.15 (2018-06-29)

• Change superevent threshold and mock event rate to once per hour.

• Add gracedb.create_label task.

• Always upload external triggers to the ‘External’ group.

• Add rudimentary burst event workflow to orchestrator: it just generates VOEvents and circulars.

• Create a label in GraceDB whenever em_bright or bayestar completes.

9.63 0.0.14 (2018-06-28)

• Fix typo that was causing a task to fail.

• Decrease orchestrator timeout to 15 seconds.

9.64 0.0.13 (2018-06-28)

• Change FAR threshold for creation of superevents to 1 per day.

• Update ligo-followup-advocate to >= 0.0.10. Re-enable automatic generation of GCN circulars.

• Add “EM bright” classification. This is rudimentary and based only on the point mass estimates from the search
pipeline because some of the EM bright classifier’s dependencies are not yet ready for Python 3.

• Added logic to select CBC events as preferred event over Burst. FAR acts as tie breaker when groups for
preferred event and new event match.

• BAYESTAR now adds GraceDB URLs of events to FITS headers.

9.65 0.0.12 (2018-06-28)

• Prevent receiving duplicate copies of LVAlert messages by unregistering redundant LVAlert message types.

• Update to ligo-followup-advocate >= 0.0.9 to update GCN Circular text for superevents. Unfortunately, circulars
are still disabled due to a regression in ligo-gracedb (see https://git.ligo.org/lscsoft/gracedb-client/issues/7).

• Upload BAYESTAR sky maps and annotations to superevents.

• Create (but do not send) preliminary VOEvents for all superevents. No vetting is performed yet.

9.66 0.0.11 (2018-06-27)

• Submit handler tasks to Celery as a single group.

• Retry GraceDB tasks that raise a TimeoutError exception.

• The superevent handler now skips LVAlert messages that do not affect the false alarm rate of an event (e.g.
simple log messages).

90 Chapter 9. Changelog

https://git.ligo.org/lscsoft/gracedb-client/issues/7

GWCelery Documentation, Release 0.9.0

(Note that the false alarm rate in GraceDB is set by the initial event upload and can be updated by replacing the
event; however replacing the event does not produce an LVAlert message at all, so there is no way to intercept
it.)

• Added a query kwarg to superevents method to reduce latency in fetching the superevents from gracedb.

• Refactored getting event information for update type events so that gracedb is polled only once to get the
information needed for superevent manager.

• Renamed the set_preferred_event task in gracedb.py to update_superevent to be a full wrapper
around the updateSuperevent client function. Now it can be used to set preferred event and also update
superevent time windows.

• Many cwb (extra) attributes, which should be floating point numbers, are present in lvalert packet as strings.
Casting them to avoid embarassing TypeErrors.

• Reverted back the typecasting of far, gpstime into float. This is fixed in https://git.ligo.org/lscsoft/gracedb/
issues/10

• CBC t_start and t_end values are changed to 1 sec interval.

• Added ligo-raven to run on external trigger and superevent creation lvalerts to search for coincidences. In case
of coincidence, EM_COINC label is applied to the superevent and external trigger page and the external trigger
is added to the list of em_events in superevent object dictionary.

• cwb and lib nodes added to superevent handler.

• Events are treated as finite segment window, initial superevent creation with preferred event window. Addition
of events to superevents may change the superevent window and also the preferred event.

• Change default GraceDB server to https://gracedb-playground.ligo.org/ for open public alert challenge.

• Update to ligo-gracedb >= 1.29dev1.

• Rename the get_superevent task to get_superevents and add a new get_superevent task that is
a trivial wrapper around ligo.gracedb.rest.GraceDb.superevent().

9.67 0.0.10 (2018-06-13)

• Model the time extent of events and superevents using the glue.segments module.

• Replace GraceDB.get with GraceDB.superevents from the recent dev release of gracedb-client.

• Fix possible false positive matches between GCNs for unrelated GRBs by matching on both TrigID (which is
generally the mission elapsed time) and mission name.

• Add the configuration variable superevent_far_threshold to limit the maximum false alarm rate of
events that are included in superevents.

• LVAlert handlers are now passed the actual alert data structure rather than the JSON text, so handlers are no
longer responsible for calling json.loads. It is a little bit more convenient and possibly also faster for
Celery to deserialize the alert messages.

• Introduce Production, Development, Test, and Playground application configuration objects in order
to facilitate quickly switching between GraceDB servers.

• Pipeline specific start and end times for superevent segments. These values are controlled via configuration
variables.

9.67. 0.0.10 (2018-06-13) 91

https://git.ligo.org/lscsoft/gracedb/issues/10
https://git.ligo.org/lscsoft/gracedb/issues/10
https://gracedb-playground.ligo.org/

GWCelery Documentation, Release 0.9.0

9.68 0.0.9 (2018-06-06)

• Add missing LVAlert message types to superevent handler.

9.69 0.0.8 (2018-06-06)

• Add some logging to the GCN and LVAlert dispatch code in order to diagnose missed messages.

9.70 0.0.7 (2018-05-31)

• Ingest Swift, Fermi, and SNEWS GCN notices and save them in GraceDB.

• Depend on the pre-release version of the GraceDB client, ligo-gracedb 1.29.dev0, because this is the only version
that supports superevents at the moment.

9.71 0.0.6 (2018-05-26)

• Generate GCN Circular drafts using ligo-followup-advocate.

• In the continuous integration pipeline, validate PEP8 naming conventions using pep8-naming.

• Add instructions for measuring test coverage and running the linter locally to the contributing guide.

• Rename gwcelery.tasks.voevent to gwcelery.tasks.gcn to make it clear that this submodule
contains functionality related to GCN notices, rather than VOEvents in general.

• Rename gwcelery.tasks.dispatch to gwcelery.tasks.orchestrator to make it clear that this
module encapsulates the behavior associated with the “orchestrator” in the O3 low-latency design document.

• Mock up calls to BAYESTAR in test suite to speed it up.

• Unify dispatch of LVAlert and GCN messages using decorators. GCN notice handlers are declared like this:

import lxml.etree
from gwcelery.tasks import gcn

@gcn.handler(gcn.NoticeType.FERMI_GBM_GND_POS,
gcn.NoticeType.FERMI_GBM_FIN_POS)

def handle_fermi(payload):
root = lxml.etree.fromstring(payload)
do work here...

LVAlert message handlers are declared like this:

import json
from gwcelery.tasks import lvalert

@lvalert.handler('cbc_gstlal',
'cbc_pycbc',
'cbc_mbta')

def handle_cbc(alert_content):
alert = json.loads(alert_content)
do work here...

92 Chapter 9. Changelog

https://git.ligo.org/emfollow/ligo-followup-advocate
https://pypi.org/project/pep8-naming/

GWCelery Documentation, Release 0.9.0

• Instead of carrying around the GraceDB service URL in tasks, store the GraceDB host name in the Celery
application config.

• Create superevents by simple clustering in time. Currently this is only supported by the gracedb-dev1 host.

9.72 0.0.5 (2018-05-08)

• Disable socket access during most unit tests. This adds some extra assurance that we don’t accidentally interact
with production servers during the unit tests.

• Ignore BAYESTAR jobs that raise a DetectorDisabled error. These exceptions are used for control flow
and do not constitute a real error. Ignoring these jobs avoids polluting logs and the Flower monitor.

9.73 0.0.4 (2018-04-28)

• FITS history and comment entries are now displayed in a monospaced font.

• Adjust error reporting for some tasks.

• Depend on newer version of ligo.skymap.

• Add unit tests for the gwcelery condor submit subcommand.

9.74 0.0.3 (2018-04-27)

• Fix some compatibility issues between the gwcelery condor submit subcommand and the format of
condor_q -totals -xml with older versions of HTCondor.

9.75 0.0.2 (2018-04-27)

• Add gwcelery condor submit and related subcommands as shortcuts for managing GWCelery running
under HTCondor.

9.76 0.0.1 (2018-04-27)

• This is the initial release. It provides rapid sky localization with BAYESTAR, sky map annotation, and sending
mock alerts.

• By default, GWCelery is configured to listen to the test LVAlert server.

• Sending VOEvents to GCN/TAN is disabled for now.

9.72. 0.0.5 (2018-05-08) 93

GWCelery Documentation, Release 0.9.0

94 Chapter 9. Changelog

CHAPTER 10

License

The GWCelery Logo is a composite of Celery2 by Tiia Monto and Lorentzian Wormhole by Kes47 from Wikimedia
Commons (CC BY-SA 3.0).

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

(continues on next page)

95

https://git.ligo.org/emfollow/gwcelery/blob/master/doc/_static/logo.png
https://commons.wikimedia.org/wiki/File:Celery2.png
https://commons.wikimedia.org/wiki/File:Lorentzian_Wormhole.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode

GWCelery Documentation, Release 0.9.0

(continued from previous page)

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

(continues on next page)

96 Chapter 10. License

GWCelery Documentation, Release 0.9.0

(continued from previous page)

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be

(continues on next page)

97

GWCelery Documentation, Release 0.9.0

(continued from previous page)

distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this

(continues on next page)

98 Chapter 10. License

GWCelery Documentation, Release 0.9.0

(continued from previous page)

License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

(continues on next page)

99

GWCelery Documentation, Release 0.9.0

(continued from previous page)

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

(continues on next page)

100 Chapter 10. License

GWCelery Documentation, Release 0.9.0

(continued from previous page)

This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

101

GWCelery Documentation, Release 0.9.0

102 Chapter 10. License

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

GWCelery is open source and is licensed under the GNU General Public License v2 or later.

103

GWCelery Documentation, Release 0.9.0

104 Chapter 11. Indices and tables

Bibliography

[LIGO] https://wiki.ligo.org/Calibration/TDCalibReview

[Virgo] https://dcc.ligo.org/G1801125/

[DMT] https://wiki.ligo.org/DetChar/DmtDqVector

[GCN] https://gcn.gsfc.nasa.gov

105

https://wiki.ligo.org/Calibration/TDCalibReview
https://dcc.ligo.org/G1801125/
https://wiki.ligo.org/DetChar/DmtDqVector
https://gcn.gsfc.nasa.gov

GWCelery Documentation, Release 0.9.0

106 Bibliography

Python Module Index

c
gwcelery.conf, 21
gwcelery.conf.development, 24
gwcelery.conf.playground, 24
gwcelery.conf.production, 24
gwcelery.conf.test, 25

e
gwcelery.email, 25
gwcelery.email.bootsteps, 25
gwcelery.email.signals, 26

g
gwcelery, 21

l
gwcelery.lvalert, 26
gwcelery.lvalert.bootsteps, 26
gwcelery.lvalert.signals, 27

s
gwcelery.sentry, 27

t
gwcelery.tasks, 27
gwcelery.tasks.bayestar, 27
gwcelery.tasks.circulars, 28
gwcelery.tasks.condor, 28
gwcelery.tasks.detchar, 30
gwcelery.tasks.em_bright, 33
gwcelery.tasks.external_triggers, 35
gwcelery.tasks.first2years, 36
gwcelery.tasks.gcn, 37
gwcelery.tasks.gracedb, 38
gwcelery.tasks.inference, 39
gwcelery.tasks.ligo_fermi_skymaps, 36
gwcelery.tasks.lvalert, 42
gwcelery.tasks.orchestrator, 45
gwcelery.tasks.p_astro, 49

gwcelery.tasks.raven, 50
gwcelery.tasks.skymaps, 52
gwcelery.tasks.superevents, 55
gwcelery.tools, 57
gwcelery.tools.condor, 58
gwcelery.tools.flask, 58
gwcelery.tools.nagios, 59

u
gwcelery.util, 59

v
gwcelery.voevent, 60
gwcelery.voevent.bootsteps, 60
gwcelery.voevent.logging, 61
gwcelery.voevent.signals, 62
gwcelery.voevent.util, 61

107

GWCelery Documentation, Release 0.9.0

108 Python Module Index

Index

A
add_arguments() (gwcel-

ery.tools.condor.CondorCommand method),
58

add_arguments() (gwcel-
ery.tools.flask.FlaskCommand method),
58

add_worker_arguments() (in module gwcel-
ery.email), 25

add_worker_arguments() (in module gwcel-
ery.lvalert), 26

after_setup_logger() (in module gwcel-
ery.voevent.logging), 61

app (in module gwcelery), 21

B
Broadcaster (class in gwcelery.voevent.bootsteps), 60

C
catch_retryable_http_errors() (in module

gwcelery.tasks.gracedb), 38
check_idq() (in module gwcelery.tasks.detchar), 31
check_status() (in module gwcelery.tools.nagios),

59
check_vector() (in module gwcelery.tasks.detchar),

32
check_vector_prepost (in module gwcelery.conf),

22
condor_accounting_group (in module gwcel-

ery.conf), 21
condor_accounting_group (in module gwcel-

ery.conf.production), 24
CondorCommand (class in gwcelery.tools.condor), 58
configure() (in module gwcelery.sentry), 27
create() (gwcelery.email.bootsteps.Receiver method),

25
create() (gwcelery.lvalert.bootsteps.Receiver

method), 26

create() (gwcelery.voevent.bootsteps.Reactor
method), 60

create_cache() (in module gwcelery.tasks.detchar),
30

create_combined_skymap() (in module gwcel-
ery.tasks.ligo_fermi_skymaps), 36

create_service() (gwcel-
ery.voevent.bootsteps.Broadcaster method),
60

create_service() (gwcel-
ery.voevent.bootsteps.Receiver method),
61

CRITICAL (gwcelery.tools.nagios.NagiosPluginStatus
attribute), 59

D
detchar_bit_definitions (in module gwcel-

ery.conf), 23
dqr_json() (in module gwcelery.tasks.detchar), 31
DSN (in module gwcelery.sentry), 27

E
email_host (in module gwcelery.conf), 22
email_received (in module gwcelery.email.signals),

26
expose_to_public (in module gwcelery.conf), 21
expose_to_public (in module gwcel-

ery.conf.production), 24

F
FlaskCommand (class in gwcelery.tools.flask), 58
FROZEN_LABEL (in module gwcel-

ery.tasks.superevents), 55

G
generate_table() (in module gwcel-

ery.tasks.detchar), 31
get_active_lvalert_nodes() (in module gwcel-

ery.tools.nagios), 59

109

GWCelery Documentation, Release 0.9.0

get_active_queues() (in module gwcel-
ery.tools.nagios), 59

get_active_voevent_peers() (in module gwcel-
ery.tools.nagios), 59

get_category() (in module gwcel-
ery.tasks.superevents), 55

get_constraints() (in module gwcel-
ery.tools.condor), 58

get_expected_lvalert_nodes() (in module
gwcelery.tools.nagios), 59

get_expected_queues() (in module gwcel-
ery.tools.nagios), 59

get_host_port() (in module gwcelery.voevent.util),
61

get_instruments() (in module gwcel-
ery.tasks.superevents), 56

get_instruments_in_ranking_statistic()
(in module gwcelery.tasks.superevents), 56

get_local_ivo() (in module gwcelery.voevent.util),
61

get_network() (in module gwcelery.voevent.util), 61
get_snr() (in module gwcelery.tasks.superevents), 56
get_ts() (in module gwcelery.tasks.superevents), 55
gracedb_host (in module gwcelery.conf), 21
gracedb_host (in module gwcel-

ery.conf.development), 24
gracedb_host (in module gwcelery.conf.production),

24
gracedb_host (in module gwcelery.conf.test), 25
gwcelery (module), 21
gwcelery.conf (module), 21
gwcelery.conf.development (module), 24
gwcelery.conf.playground (module), 24
gwcelery.conf.production (module), 24
gwcelery.conf.test (module), 25
gwcelery.email (module), 25
gwcelery.email.bootsteps (module), 25
gwcelery.email.signals (module), 26
gwcelery.lvalert (module), 26
gwcelery.lvalert.bootsteps (module), 26
gwcelery.lvalert.signals (module), 27
gwcelery.sentry (module), 27
gwcelery.tasks (module), 27
gwcelery.tasks.bayestar (module), 27
gwcelery.tasks.circulars (module), 28
gwcelery.tasks.condor (module), 28
gwcelery.tasks.detchar (module), 30
gwcelery.tasks.em_bright (module), 33
gwcelery.tasks.external_triggers (mod-

ule), 35
gwcelery.tasks.first2years (module), 36
gwcelery.tasks.gcn (module), 37
gwcelery.tasks.gracedb (module), 38
gwcelery.tasks.inference (module), 39

gwcelery.tasks.ligo_fermi_skymaps (mod-
ule), 36

gwcelery.tasks.lvalert (module), 42
gwcelery.tasks.orchestrator (module), 45
gwcelery.tasks.p_astro (module), 49
gwcelery.tasks.raven (module), 50
gwcelery.tasks.skymaps (module), 52
gwcelery.tasks.superevents (module), 55
gwcelery.tools (module), 57
gwcelery.tools.condor (module), 58
gwcelery.tools.flask (module), 58
gwcelery.tools.nagios (module), 59
gwcelery.util (module), 59
gwcelery.voevent (module), 60
gwcelery.voevent.bootsteps (module), 60
gwcelery.voevent.logging (module), 61
gwcelery.voevent.signals (module), 62
gwcelery.voevent.util (module), 61

H
handler (in module gwcelery.tasks.gcn), 37
handler (in module gwcelery.tasks.lvalert), 42
handling_system_exit() (in module gwcel-

ery.util), 59
high_latency_frame_types (in module gwcel-

ery.conf), 23
high_latency_frame_types (in module gwcel-

ery.conf.production), 25
hold() (in module gwcelery.tools.condor), 58

I
idq_channels (in module gwcelery.conf), 23
idq_channels (in module gwcelery.conf.production),

25
idq_pglitch_thresh (in module gwcelery.conf), 23
idq_veto (in module gwcelery.conf), 23
info() (gwcelery.lvalert.bootsteps.Receiver method),

26
info() (gwcelery.voevent.bootsteps.Broadcaster

method), 60
info() (gwcelery.voevent.bootsteps.Receiver method),

61
install() (in module gwcelery.email), 25
install() (in module gwcelery.lvalert), 26
install() (in module gwcelery.voevent), 60
is_3d_fits_file() (in module gwcel-

ery.tasks.skymaps), 52
is_complete() (in module gwcel-

ery.tasks.superevents), 56

J
JobAborted, 28
JobFailed, 28
JobRunning, 28

110 Index

GWCelery Documentation, Release 0.9.0

K
keyfunc() (in module gwcelery.tasks.superevents), 57

L
llhoft_channels (in module gwcelery.conf), 23
llhoft_glob (in module gwcelery.conf), 23
llhoft_glob (in module gwcelery.conf.production),

24
low_latency_frame_types (in module gwcel-

ery.conf), 23
low_latency_frame_types (in module gwcel-

ery.conf.production), 24
lvalert_host (in module gwcelery.conf), 21
lvalert_host (in module gwcelery.conf.production),

24
lvalert_host (in module gwcelery.conf.test), 25
lvalert_received (in module gwcel-

ery.lvalert.signals), 27

M
main() (in module gwcelery.tools.flask), 58
mock_events_simulate_multiple_uploads

(in module gwcelery.conf), 23
mock_events_simulate_multiple_uploads

(in module gwcelery.conf.playground), 24

N
NagiosCommand (class in gwcelery.tools.nagios), 59
NagiosCriticalError, 59
NagiosPluginStatus (class in gwcel-

ery.tools.nagios), 59
name (gwcelery.email.bootsteps.Receiver attribute), 25
name (gwcelery.lvalert.bootsteps.Receiver attribute), 26
name (gwcelery.voevent.bootsteps.Broadcaster at-

tribute), 60
name (gwcelery.voevent.bootsteps.Reactor attribute), 60
name (gwcelery.voevent.bootsteps.Receiver attribute), 61
NamedTemporaryFile() (in module gwcelery.util),

59
NotEnoughData, 39

O
OK (gwcelery.tools.nagios.NagiosPluginStatus attribute),

59
omegascan_durations (in module gwcelery.conf),

23

P
pe_results_path (in module gwcelery.conf), 23
pe_results_url (in module gwcelery.conf), 23
pe_threshold (in module gwcelery.conf), 23
pe_timeout (in module gwcelery.conf), 22

pre_pe_tasks() (in module gwcel-
ery.tasks.inference), 40

preliminary_alert_far_threshold (in mod-
ule gwcelery.conf), 22

preliminary_alert_timeout (in module gwcel-
ery.conf), 22

preliminary_alert_trials_factor (in mod-
ule gwcelery.conf), 22

PromiseProxy (class in gwcelery.util), 59
Python Enhancement Proposals

PEP 8, 64

Q
q() (in module gwcelery.tools.condor), 58

R
raven_coincidence_windows (in module gwcel-

ery.conf), 23
Reactor (class in gwcelery.voevent.bootsteps), 60
READY_LABEL (in module gwcelery.tasks.superevents),

55
Receiver (class in gwcelery.email.bootsteps), 25
Receiver (class in gwcelery.lvalert.bootsteps), 26
Receiver (class in gwcelery.voevent.bootsteps), 60
release() (in module gwcelery.tools.condor), 58
REQUIRED_LABELS_BY_GROUP (in module gwcel-

ery.tasks.superevents), 55
requires (gwcelery.voevent.bootsteps.Receiver at-

tribute), 61
resubmit() (in module gwcelery.tools.condor), 58
RetryableHTTPError (class in gwcel-

ery.tasks.gracedb), 38
RFC

RFC 822, 26
rm() (in module gwcelery.tools.condor), 58
run() (gwcelery.tools.condor.CondorCommand

method), 58
run() (gwcelery.tools.flask.FlaskCommand method), 58
run() (gwcelery.tools.nagios.NagiosCommand

method), 59
run_exec() (in module gwcelery.tools.condor), 58
running() (in module gwcelery.tools.condor), 58

S
SendingError, 37
sentry_environment (in module gwcel-

ery.conf.development), 24
sentry_environment (in module gwcel-

ery.conf.playground), 24
sentry_environment (in module gwcel-

ery.conf.production), 25
sentry_environment (in module gwcel-

ery.conf.test), 25

Index 111

GWCelery Documentation, Release 0.9.0

should_publish() (in module gwcel-
ery.tasks.superevents), 57

snews_gw_far_threshold (in module gwcel-
ery.conf), 22

start() (gwcelery.email.bootsteps.Receiver method),
25

start() (gwcelery.lvalert.bootsteps.Receiver method),
26

start() (gwcelery.voevent.bootsteps.Reactor method),
60

state_vector_channel_names (in module gwcel-
ery.conf), 23

stop() (gwcelery.email.bootsteps.Receiver method), 25
stop() (gwcelery.lvalert.bootsteps.Receiver method),

26
stop() (gwcelery.voevent.bootsteps.Reactor method),

60
strain_channel_names (in module gwcelery.conf),

23
strain_channel_names (in module gwcel-

ery.conf.production), 25
submit() (in module gwcelery.tools.condor), 58
subthreshold_annotation_timeout (in mod-

ule gwcelery.conf), 22
superevent_clean_up_timeout (in module

gwcelery.conf), 22
superevent_d_t_end (in module gwcelery.conf), 22
superevent_d_t_start (in module gwcelery.conf),

22
superevent_default_d_t_end (in module gwcel-

ery.conf), 22
superevent_default_d_t_start (in module

gwcelery.conf), 22
superevent_far_threshold (in module gwcel-

ery.conf), 22
superevent_query_d_t_end (in module gwcel-

ery.conf), 22
superevent_query_d_t_start (in module gwcel-

ery.conf), 22

T
task() (in module gwcelery.tasks.gracedb), 38

U
UNKNOWN (gwcelery.tools.nagios.NagiosPluginStatus at-

tribute), 59
uses_gatedhoft (in module gwcelery.conf), 23

V
voevent_broadcaster_address (in module

gwcelery.conf), 21
voevent_broadcaster_address (in module

gwcelery.conf.production), 24

voevent_broadcaster_whitelist (in module
gwcelery.conf), 22

voevent_broadcaster_whitelist (in module
gwcelery.conf.production), 24

voevent_received (in module gwcel-
ery.voevent.signals), 62

voevent_receiver_address (in module gwcel-
ery.conf), 22

W
WARNING (gwcelery.tools.nagios.NagiosPluginStatus at-

tribute), 59

112 Index

	Quick start
	To install
	To test
	To start

	Design and anatomy of GWCelery
	Conceptual overview
	Block diagram
	Processes
	Eternal tasks
	Handlers

	Configuration
	Authentication

	Running under HTCondor
	Shortcuts
	Managing multiple deployments
	Job accounting

	Monitoring and Management
	Flower
	Sentry
	Flask
	Nagios
	Command-Line Tools

	API Reference
	gwcelery.conf module
	gwcelery.email module
	gwcelery.lvalert module
	gwcelery.sentry module
	gwcelery.tasks module
	gwcelery.tools module
	gwcelery.util module
	gwcelery.voevent module

	Contributing
	Development model
	Where new code should go
	Guidelines for tasks
	Unit tests
	Code style
	Documentation

	Deployment
	Continuous deployment
	Making a new release

	Changelog
	0.9.0 (2019-11-23)
	0.8.7 (2019-09-14)
	0.8.5.1 (2019-09-04)
	0.8.6 (2019-09-01)
	0.8.5 (2019-08-23)
	0.8.4 (2019-08-16)
	0.8.3 (2019-08-09)
	0.8.2 (2019-08-02)
	0.8.1 (2019-07-29)
	0.8.0 (2019-07-26)
	0.7.1 (2019-07-12)
	0.7.0 (2019-06-21)
	0.6.3 (2019-06-14)
	0.6.2 (2019-06-07)
	0.6.1 (2019-05-24)
	0.6.0 (2019-05-20)
	0.5.7 (2019-05-13)
	0.5.6 (2018-05-08)
	0.5.5 (2019-05-03)
	0.5.4 (2019-05-01)
	0.5.3 (2019-04-17)
	0.5.2 (2019-04-15)
	0.5.1 (2019-04-12)
	0.5.0 (2019-04-12)
	0.4.3 (2019-04-05)
	0.4.2 (2019-04-05)
	0.4.1 (2019-04-02)
	0.4.0 (2019-03-29)
	0.3.1 (2019-03-18)
	0.3.0 (2019-03-01)
	0.2.6 (2019-02-12)
	0.2.5 (2019-02-01)
	0.2.4 (2018-12-17)
	0.2.3 (2018-12-16)
	0.2.2 (2018-12-14)
	0.2.1 (2018-12-14)
	0.2.0 (2018-12-14)
	0.1.7 (2018-11-27)
	0.1.6 (2018-11-14)
	0.1.5 (2018-11-13)
	0.1.4 (2018-10-29)
	0.1.3 (2018-10-26)
	0.1.2 (2018-10-11)
	0.1.1 (2018-10-04)
	0.1.0 (2018-09-26)
	0.0.31 (2018-09-04)
	0.0.30 (2018-08-02)
	0.0.29 (2018-07-31)
	0.0.28 (2018-07-25)
	0.0.27 (2018-07-22)
	0.0.26 (2018-07-20)
	0.0.25 (2018-07-19)
	0.0.24 (2018-07-18)
	0.0.23 (2018-07-18)
	0.0.22 (2018-07-11)
	0.0.21 (2018-07-10)
	0.0.20 (2018-07-09)
	0.0.19 (2018-07-09)
	0.0.18 (2018-07-06)
	0.0.17 (2018-07-05)
	0.0.16 (2018-07-05)
	0.0.15 (2018-06-29)
	0.0.14 (2018-06-28)
	0.0.13 (2018-06-28)
	0.0.12 (2018-06-28)
	0.0.11 (2018-06-27)
	0.0.10 (2018-06-13)
	0.0.9 (2018-06-06)
	0.0.8 (2018-06-06)
	0.0.7 (2018-05-31)
	0.0.6 (2018-05-26)
	0.0.5 (2018-05-08)
	0.0.4 (2018-04-28)
	0.0.3 (2018-04-27)
	0.0.2 (2018-04-27)
	0.0.1 (2018-04-27)

	License
	Indices and tables
	Bibliography
	Python Module Index
	Index

